Artwork

Content provided by MRS Bulletin. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by MRS Bulletin or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Episode 20: Resistance of analog deep learning device responds in ~5 nanoseconds

5:59
 
Share
 

Manage episode 345944970 series 2602554
Content provided by MRS Bulletin. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by MRS Bulletin or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate glass, or PSG, layered on top of the tungsten oxide. Palladium is above the PSG layer, which is a reservoir for the protons when they are shuttled out of the tungsten oxide to make it more resistive. “When protons get in, it becomes more conductive. When the protons go out, it becomes less conductive,” says Onen. The resistance of this device responds in about 5 ns. This work was published in a recent issue of Science (doi:10.1126/science.abp8064).

  continue reading

97 episodes

Artwork
iconShare
 
Manage episode 345944970 series 2602554
Content provided by MRS Bulletin. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by MRS Bulletin or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

In this podcast episode, MRS Bulletin’s Sophia Chen interviews Murat Onen, a postdoctoral researcher at the Massachusetts Institute of Technology, about analog deep learning that could help lower the cost of training artificial intelligence (AI). The programmable analog device stores information in the same place where the information is processed. The resistor’s main material is tungsten oxide, which can be reversibly doped with protons from an electrolyte material known as phosphosilicate glass, or PSG, layered on top of the tungsten oxide. Palladium is above the PSG layer, which is a reservoir for the protons when they are shuttled out of the tungsten oxide to make it more resistive. “When protons get in, it becomes more conductive. When the protons go out, it becomes less conductive,” says Onen. The resistance of this device responds in about 5 ns. This work was published in a recent issue of Science (doi:10.1126/science.abp8064).

  continue reading

97 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide