show episodes
 
N
NLP Highlights

1
NLP Highlights

Allen Institute for Artificial Intelligence

Unsubscribe
Unsubscribe
Monthly
 
Welcome to the NLP highlights podcast, where we invite researchers to talk about their work in various areas in natural language processing. The hosts are the members of the AllenNLP team at Allen Institute for AI. All views expressed belong to the hosts and guests and do not represent their employers.
 
Denise is the former Scotland National Coach for Netball, and the founder of the business Class Performance – Excellence Within. She has over 30 years of experience in performance sport as an athlete, selector, mentor, performance director, and, more recently, as a national coach. Her highlight was leading the Scottish Thistles, via 46 International CAPS from World Ranking 17th to 12th to qualify for the Commonwealth Games held in Glasgow 2014. This podcast series is for sportspeople, male a ...
 
Loading …
show series
 
This episode is the second in our current series on PhD applications.How do PhD programs in Europe differ from PhD programs in the US, and how should people decide between them? In this episode, we invite Barbara Plank (Professor at ITU, IT University of Copenhagen) and Gonçalo Correia (ELLIS PhD student at University of Lisbon and University of Am…
 
Joe Bailey, licensed psychologist, trainer of therapists, and author of six books talks with Denise Holland about the impact on people's lives through his work and now his latest book, "Thriving in the Eye of the Hurricanes - Unlocking Resilience in Turbulent Times". Joe is an expert in transforming people's lives, especially in addiction, trauma a…
 
This episode is the first in our current series on PhD applications.How should people prepare their applications to PhD programs in NLP? In this episode, we invite Nathan Schneider (Professor of Linguistics and Computer Science at Georgetown University) and Roma Patel (PhD student in Computer Science at Brown University) to share their perspectives…
 
In this episode, we discussed the Alexa Prize Socialbot Grand Challenge and this year's winning submission, Alquist 4.0, with Petr Marek, a member of the winning team. Petr gave us an overview of their submission, the design choices that led to them winning the competition, including combining a hardcoded dialog tree and a neural generator model an…
 
What can NLP researchers learn from Human Computer Interaction (HCI) research? We chatted with Nanna Inie and Leon Derczynski to find out. We discussed HCI's research processes including methods of inquiry, the data annotation processes used in HCI, and how they are different from NLP, and the cognitive methods used in HCI for qualitative error ana…
 
In this episode, we talk with Lisa Beinborn, an assistant professor at Vrije Universiteit Amsterdam, about how to use human cognitive signals to improve and analyze NLP models. We start by discussing different kinds of cognitive signals—eye-tracking, EEG, MEG, and fMRI—and challenges associated with using them. We then turn to Lisa’s recent work co…
 
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can…
 
We discussed adversarial dataset construction and dynamic benchmarking in this episode with Douwe Kiela, a research scientist at Facebook AI Research who has been working on a dynamic benchmarking platform called Dynabench. Dynamic benchmarking tries to address the issue of many recent datasets getting solved with little progress being made towards…
 
We invited members of Masakhane, Tosin Adewumi and Perez Ogayo, to talk about their EMNLP Findings paper that discusses why typical research is limited for low-resourced NLP and how participatory research can help. As a result of participatory research, Masakhane has many, many success stories: first datasets and benchmarks in African languages, fi…
 
We invited Lisa Li to talk about her recent work, Prefix-Tuning: Optimizing Continuous Prompts for Generation. Prefix tuning is a lightweight alternative to finetuning, and the idea is to tune only a fixed-length task-specific continuous vector, and to keep the pretrained transformer parameters frozen. We discussed how prefix tuning compares with f…
 
How can we build Visual Question Answering systems for real users? For this episode, we chatted with Danna Gurari, about her work in building datasets and models towards VQA for people who are blind. We talked about the differences between the existing datasets, and Vizwiz, a dataset built by Gurari et al., and the resulting algorithmic changes. We…
 
We invited Jayant Krishnamurthy and Hao Fang, researchers at Microsoft Semantic Machines to discuss their platform for building task-oriented dialog systems, and their recent TACL paper on the topic. The paper introduces a new formalism for task-oriented dialog to effectively handle references and revisions in complex dialog, and a large realistic …
 
In this episode, Robin Jia talks about how to build robust NLP systems. We discuss the different senses in which a system can be robust, reasons to care about system robustness, and the challenges involved in evaluating robustness of NLP models. We talk about how to build certifiably robust models through interval bound propagation and discrete enc…
 
We invited Nils Holzenberger, a PhD student at JHU to talk about a dataset involving statutory reasoning in tax law Holzenberger et al. released recently. This dataset includes difficult textual entailment and question answering problems that involve reasoning about how sections in tax law are applicable to specific cases. They also released a Prol…
 
We invited Alona Fyshe to talk about the link between NLP and the human brain. We began by talking about what we currently know about the connection between representations used in NLP and representations recorded in the brain. We also discussed how different brain imaging techniques compare to each other. We then dove into experiments investigatin…
 
We invited Asli Celikyilmaz for this episode to talk about evaluation of text generation systems. We discussed the challenges in evaluating generated text, and covered human and automated metrics, with a discussion of recent developments in learning metrics. We also talked about some open research questions, including the difficulties in evaluating…
 
In this episode, Diyi Yang gives us an overview of using NLP models for social applications, including understanding social relationships, processes, roles, and power. As NLP systems are getting used more and more in the real world, they additionally have increasing social impacts that must be studied. We talk about how to get started in this field…
 
In this episode, we talked about Coreference Resolution with Marta Recasens, a Research Scientist at Google. We discussed the complexity involved in resolving references in language, the simplification of the problem that the NLP community has focused on by talking about specific datasets, and the complex coreference phenomena that are not yet capt…
 
We interviewed Sameer Singh for this episode, and discussed an overview of recent work in interpreting NLP model predictions, particularly instance-level interpretations. We started out by talking about why it is important to interpret model outputs and why it is a hard problem. We then dove into the details of three kinds of interpretation techniq…
 
We invited Yonatan Bisk to talk about grounded language understanding. We started off by discussing an overview of the topic, its research goals, and the the challenges involved. In the latter half of the conversation, we talked about ALFRED (Shridhar et al., 2019), a grounded instruction following benchmark that simulates training a robot butler. …
 
Wanting and waiting for things to get back to normal might sound like a useful strategy, but how helpful is this experience, and is it holding you back from creating something amazing in your life or business? Ever noticed that no matter how difficult and challenging times get, there is a point where the ever-increasing stretch of stress, eventuall…
 
In this special episode, Carissa Schoenick, a program manager and communications director at AI2 interviewed Matt Gardner about AllenNLP. We chatted about the origins of AllenNLP, the early challenges in building it, and the design decisions behind the library. Given the release of AllenNLP 1.0 this week, we asked Matt what users can expect from th…
 
Original Article: Why does confidence appear to be such a critical factor in sports performance? How lack of confidence destroyed my enjoyment and my game! During my time as a national athlete, I could have used heaps more clarity and confidence. One time, I remember being in Australia on tour for the Hong Kong National Netball Team, that I stayed …
 
We invited Marco Tulio Ribeiro, a Senior Researcher at Microsoft, to talk about evaluating NLP models using behavioral testing, a framework borrowed from Software Engineering. Marco describes three kinds of black-box tests the check whether NLP models satisfy certain necessary conditions. While breaking the standard IID assumption, this framework p…
 
We invited Fernando Pereira, a VP and Distinguished Engineer at Google, where he leads NLU and ML research, to talk about managing NLP research teams in industry. Topics we discussed include prioritizing research against product development and effective collaboration with product teams, dealing with potential research interest mismatch between ind…
 
We invited Steven Cao to talk about his paper on multilingual alignment of contextual word embeddings. We started by discussing how multilingual transformers work in general, and then focus on Steven’s work on aligning word representations. The core idea is to start from a list of words automatically aligned from parallel corpora and to ensure the …
 
We invited Jon Clark from Google to talk about TyDi QA, a new question answering dataset, for this episode. The dataset contains information seeking questions in 11 languages that are typologically diverse, i.e., they differ from each other in terms of key structural and functional features. The questions in TyDiQA are information-seeking, like tho…
 
During this Coronavirus, it’s common to want to feel better, get some relief, worry less and experience hope even amidst uncertainty and dramatic change, but where should you look? What do you usually do when you feel uncomfortable? Most people seem to up their game, and change something or someone out there, very few would look inside to the natur…
 
In this episode, Tom Kwiatkowski and Michael Collins talk about Natural Questions, a benchmark for question answering research. We discuss how the dataset was collected to reflect naturally-occurring questions, the criteria used for identifying short and long answers, how this dataset differs from other QA datasets, and how easy it might be to game…
 
How do we know, in a concrete quantitative sense, what a deep learning model knows about language? In this episode, Ellie Pavlick talks about two broad directions to address this question: structural and behavioral analysis of models. In structural analysis, we often train a linear classifier for some linguistic phenomenon we'd like to probe (e.g.,…
 
In this episode we invite Verena Rieser and Ondřej Dušek on to talk to us about the complexities of generating natural language when you have some kind of structured meaning representation as input. We talk about when you might want to do this, which is often is some kind of a dialog system, but also generating game summaries, and even some langu…
 
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of…
 
In this episode, we talked to Emily Bender about the ethical considerations in developing NLP models and putting them in production. Emily cited specific examples of ethical issues, and talked about the kinds of potential concerns to keep in mind, both when releasing NLP models that will be used by real people, and also while conducting NLP researc…
 
In this episode we invite Sudha Rao to talk about question generation. We talk about different settings where you might want to generate questions: for human testing scenarios (rare), for data augmentation (has been done a bunch for SQuAD-like tasks), for detecting missing information / asking clarification questions, for dialog uses, and others. A…
 
In this episode we talked with Victor Sanh and Thomas Wolf from HuggingFace about model distillation, and DistilBERT as one example of distillation. The idea behind model distillation is compressing a large model by building a smaller model, with much fewer parameters, that approximates the output distribution of the original model, typically for i…
 
We talked to Brendan O’Connor for this episode about processing language in social media. Brendan started off by telling us about his projects that studied the linguistic and geographical patterns of African American English (AAE), and how obtaining data from Twitter made these projects possible. We then talked about how many tools built for standa…
 
What exciting NLP research problems are involved in processing biomedical and clinical data? In this episode, we spoke with Dina Demner-Fushman, who leads NLP and IR research at the Lister Hill National Center for Biomedical Communications, part of the National Library of Medicine. We talked about processing biomedical scientific literature, unders…
 
In this episode, Jonathan Frankle describes the lottery ticket hypothesis, a popular explanation of how over-parameterization helps in training neural networks. We discuss pruning methods used to uncover subnetworks (winning tickets) which were initialized in a particularly effective way. We also discuss patterns observed in pruned networks, stabil…
 
For our 100th episode, we invite AI2 CEO Oren Etzioni to talk to us about NLP startups. Oren has founded several successful startups, is himself an investor in startups, and helps with AI2's startup incubator.Some of our discussion topics include: What's the similarity between being a researcher and an entrepreneur? How do you transition from being…
 
For this episode, we chatted with Neil Thomas and Roshan Rao about modeling protein sequences and evaluating transfer learning methods for a set of five protein modeling tasks. Learning representations using self-supervised pretaining objectives has shown promising results in transferring to downstream tasks in protein sequence modeling, just like …
 
What function do the different attention heads serve in multi-headed attention models? In this episode, Lena describes how to use attribution methods to assess the importance and contribution of different heads in several tasks, and describes a gating mechanism to prune the number of effective heads used when combined with an auxiliary loss. Then, …
 
In this episode, we talk to Taylor Berg-Kirkpatrick about optical character recognition (OCR) on historical documents. Taylor starts off by describing some practical issues related to old scanning processes of documents that make performing OCR on them a difficult problem. Then he explains how one can build latent variable models for this data usin…
 
In this episode, we chat with Luke Zettlemoyer about Question Answering as a format for crowdsourcing annotations of various semantic phenomena in text. We start by talking about QA-SRL and QAMR, two datasets that use QA pairs to annotate predicate-argument relations at the sentence level. Luke describes how this annotation scheme makes it possible…
 
In this episode, we invite Yejin Choi to talk about common sense knowledge and reasoning, a growing area in NLP. We start by discussing a working definition of “common sense” and the practical utility of studying it. We then talk about some of the datasets and resources focused on studying different aspects of common sense (e.g., ReCoRD, Commonsens…
 
In this episode, Aaron White tells us about the decompositional semantics initiative (Decomp), an attempt to re-think the prototypical approach to semantic representation and annotation. The basic idea is to decompose complex semantic classes such as ‘agent’ and ‘patient’ into simpler semantic properties such as ‘causation’ and ‘volition’, while em…
 
In this episode, we invite Alistair Johnson to discuss the main challenge in applying NLP/ML to clinical domains: the lack of data. We discuss privacy concerns, de-identification, synthesizing records, legal liabilities and data heterogeneity. We also discuss how the MIMIC dataset evolved over the years, how it is being used, and some of the under-…
 
In this episode, we invite David Bamman to give an overview of computational humanities. We discuss examples of questions studied in computational humanities (e.g., characterizing fictionality, assessing novelty, measuring the attention given to male vs. female characters in the literature). We talk about the role NLP plays in addressing these ques…
 
In this episode, we invite Jonathan Berant to talk about executable semantic parsing. We discuss what executable semantic parsing is and how it differs from related tasks such as semantic dependency parsing and abstract meaning representation (AMR) parsing. We talk about the main components of a semantic parser, how the formal language affects desi…
 
How is it like to do research in academia vs. industry? In this episode, we invite Jason Baldridge (UT Austin => Google) and Philip Resnik (Sun Microsystems => UMD) to discuss some of the aspects one may want to consider when planning their research careers, including flexibility, security and intellectual freedom. Perhaps most importantly, we disc…
 
In this episode, we invite Zhou Yu to give an overview of dialogue systems. We discuss different types of dialogue systems (task-oriented vs. non-task-oriented), the main building blocks and how they relate to other research areas in NLP, how to transfer models across domains, and the different ways used to evaluate these systems. Zhou also shares …
 
Loading …

Quick Reference Guide

Copyright 2022 | Sitemap | Privacy Policy | Terms of Service
Google login Twitter login Classic login