Artwork

Content provided by CERIAS. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by CERIAS or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Chris Jenkins, "Integrity Levels: A New Paradigm for Protecting Computing Systems"

 
Share
 

Archived series ("Inactive feed" status)

When? This feed was archived on January 12, 2017 15:24 (7+ y ago). Last successful fetch was on September 14, 2016 19:32 (7+ y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 38478667 series 39330
Content provided by CERIAS. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by CERIAS or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
As the field of determined and increasingly sophisticated adversaries multiplies, the confidence in the integrity of deployed computing devices magnifies. Given the ubiquitous connectivity, substantial storage, and accessibility, the increased reliance on computer platforms make them a substantial target for attackers. Over the past decade, malware transitioned from attacking a single program to subverting the OS kernel by means of what is known as a rootkit. While computer systems require patches to fix newly discovered vulnerabilities, undiscovered vulnerabilities potentially remain. Signature-based schemes seek to detect malware with a known signature or digital fingerprint. Signature-less schemes seek to detect anomalies within the computer system by understanding normal behavior. Both architectures are typically built on top of existing solutions or paradigms. Furthermore, these solutions tend to utilize mechanisms that operate within the OS. If the OS becomes compromised, these mechanisms may be vulnerable to deactivation. We propose an approach to designing computer systems that inherently decouples the function of the computer system from its security specification. Instead of preventing and detecting malware attacks by patching code or using signatures (though we can use them as well), our proposed approach focuses on the policy specification of the system and possible graceful degradation of functionality according to the policy as anomalies of security concern are detected. We believe this innovative paradigm uses existing technologies in a novel manner to determine the integrity level of the system. Based on the integrity level, the system may behave differently and/or limit access to data available at a given integrity level.
  continue reading

322 episodes

Artwork
iconShare
 

Archived series ("Inactive feed" status)

When? This feed was archived on January 12, 2017 15:24 (7+ y ago). Last successful fetch was on September 14, 2016 19:32 (7+ y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 38478667 series 39330
Content provided by CERIAS. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by CERIAS or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
As the field of determined and increasingly sophisticated adversaries multiplies, the confidence in the integrity of deployed computing devices magnifies. Given the ubiquitous connectivity, substantial storage, and accessibility, the increased reliance on computer platforms make them a substantial target for attackers. Over the past decade, malware transitioned from attacking a single program to subverting the OS kernel by means of what is known as a rootkit. While computer systems require patches to fix newly discovered vulnerabilities, undiscovered vulnerabilities potentially remain. Signature-based schemes seek to detect malware with a known signature or digital fingerprint. Signature-less schemes seek to detect anomalies within the computer system by understanding normal behavior. Both architectures are typically built on top of existing solutions or paradigms. Furthermore, these solutions tend to utilize mechanisms that operate within the OS. If the OS becomes compromised, these mechanisms may be vulnerable to deactivation. We propose an approach to designing computer systems that inherently decouples the function of the computer system from its security specification. Instead of preventing and detecting malware attacks by patching code or using signatures (though we can use them as well), our proposed approach focuses on the policy specification of the system and possible graceful degradation of functionality according to the policy as anomalies of security concern are detected. We believe this innovative paradigm uses existing technologies in a novel manner to determine the integrity level of the system. Based on the integrity level, the system may behave differently and/or limit access to data available at a given integrity level.
  continue reading

322 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide