Towards stability and robustness (Practical AI #141)

48:32
 
Share
 

Manage episode 297925572 series 1283731
By Changelog Media. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.

9 out of 10 AI projects don’t end up creating value in production. Why? At least partly because these projects utilize unstable models and drifting data. In this episode, Roey from BeyondMinds gives us some insights on how to filter garbage input, detect risky output, and generally develop more robust AI systems.

Discuss on Changelog News

Join Changelog++ to support our work, get closer to the metal, and make the ads disappear!

Sponsors

  • PSSC Labs – Solutions from PSSC Labs provide a cost effective, highly secure, and performance guarantee that organizations need to reach their AI and Machine Learning Goals. Learn more and and get a FREE consultation today at pssclabs.com/practicalai
  • Snowplow Analytics – The behavioral data management platform powering your data journey. Capture and process high-quality behavioral data from all your platforms and products and deliver that data to your cloud destination of choice. Get started and experience Snowplow data for yourself at snowplowanalytics.com
  • Changelog++ – You love our content and you want to take it to the next level by showing your support. We’ll take you closer to the metal with no ads, extended episodes, outtakes, bonus content, a deep discount in our merch store (soon), and more to come. Let’s do this!

Featuring

Notes and Links

1249 episodes