Machine Learning Takes on Diabetes


Manage episode 215952319 series 1951941
By Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio streamed directly from their servers.
When Bryan Mazlish's son was diagnosed with Type I diabetes, there were unexpected challenges. Managing diabetes on a day-to-day basis was tough, so he hacked into his son's insulin pump and continuous glucose monitor to create the world's first ambulatory real-world artificial pancreas. Now his mission is to make it available to everyone. Bryan Mazlish: A nice demo that we showed at Google IO earlier this summer, where we showed our use case for one of their forthcoming APIs. We’re really at the vanguard of digital health medical device enterprise software, and it's incredibly exciting but also challenging place to be. We're enthusiastic about the prospects for what we can do for a whole lot of people. Ginette: I’m Ginette. Curtis: And I’m Curtis. Ginette: And you are listening to Data Crunch. Curtis: A podcast about how data and prediction shape our world. Ginette: A Vault Analytics production. This episode of Data Crunch is brought to you by Lightpost Analytics, a company helping bridge the last mile of AI: Making data and algorithms understandable and actionable for a non-technical person, like the CEO of your company. Lightpost Analytics is offering a training academy to teach you Tableau, an industry-leading data visualization software. According to, the average salary for a Tableau Developer is above $50 per hour. If done well, making data understandable can create breakthroughs in your company and lead to recognition and promotions in your job. Go to to learn more and get some freebies. Curtis: Today we get to speak with a man who, after studying computer science at Harvard, went to start a stock-trading algorithm company on Wall Street until his life experienced a twist. Now he’s the president and co-founder of one of the leading digital health medical device enterprise software companies, which employs machine learning to customize and automate medicine intake, all because of an unexpected challenge that showed up in his life. Bryan: My name is Bryan Mazlish. I’m one of the founders of Bigfoot biomedical. My background is in quantitative finance. I spent 20 years on Wall Street, first at a large investment bank and then about a decade running a fully automated trading business where we built algorithms to buy and sell stocks completely automated fashion, and it was about 6 or 7 years ago that my path took a change . . . Ginette: Bryan’s son was diagnosed with Type 1 diabetes, which Bryan says wasn’t entirely unexpected because his wife has the same disease. But what was unexpected was the intensity of managing the disease on a day-to-day basis. He was surprised with how antiquated the insulin management technology was. There wasn’t technology that could anticipate his son’s insulin needs and automatically give him the insulin he needed. Bryan: You have a need to take insulin to just simply to live. This is something that needs to be delivered on a constant basis, 24 hours a day. You can take this in one of two ways: you can use an insulin pump that delivers this in a continuous basis, and you can also take a once-a-day injection, and the benefit of the pump is that you can vary that at different points in the day. When you take an injection, it lasts for up to 24 hours, and it doesn't have the same flexibility, but it does have the benefit of not having to wear a device to deliver the insulin. And that's just the baseline, on top of that you need to take insulin to offset meals, primarily carbohydrates and high glucose levels. So when you're going to sit down to eat breakfast, lunch, or dinner, or even a snack, you need to estimate the amount of carbohydrate and glucose impact of the meal that you're about to consume, and then dose that amount of insulin, either through an insulin pump or through an injection at that time. Ginette: Figuring out how much insulin to give yourself is tough.

63 episodes available. A new episode about every 0 hours averaging 20 mins duration .