Artwork

Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Very Large Corpora and Zipf's Law

24:11
 
Share
 

Manage episode 225317218 series 49487
Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

The earliest efforts to apply machine learning to natural language tended to convert every token (every word, more or less) into a unique feature. While techniques like stemming may have cut the number of unique tokens down, researchers always had to face a problem that was highly dimensional. Naive Bayes algorithm was celebrated in NLP applications because of its ability to efficiently process highly dimensional data.

Of course, other algorithms were applied to natural language tasks as well. While different algorithms had different strengths and weaknesses to different NLP problems, an early paper titled Scaling to Very Very Large Corpora for Natural Language Disambiguation popularized one somewhat surprising idea. For many NLP tasks, simply providing a large corpus of examples not only improved accuracy, but it also showed that asymptotically, some algorithms yielded more improvement from working on very, very large corpora.

Although not explicitly in about NLP, the noteworthy paper The Unreasonable Effectiveness of Data emphasizes this point further while paying homage to the classic treatise The Unreasonable Effectiveness of Mathematics in the Natural Sciences.

In this episode, Kyle shares a few thoughts along these lines with Linh Da.

The discussion winds up with a brief introduction to Zipf's law. When applied to natural language, Zipf's law states that the frequency of any given word in a corpus (regardless of language) will be proportional to its rank in the frequency table.

  continue reading

529 episodes

Artwork

Very Large Corpora and Zipf's Law

Data Skeptic

5,492 subscribers

published

iconShare
 
Manage episode 225317218 series 49487
Content provided by Kyle Polich. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Kyle Polich or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

The earliest efforts to apply machine learning to natural language tended to convert every token (every word, more or less) into a unique feature. While techniques like stemming may have cut the number of unique tokens down, researchers always had to face a problem that was highly dimensional. Naive Bayes algorithm was celebrated in NLP applications because of its ability to efficiently process highly dimensional data.

Of course, other algorithms were applied to natural language tasks as well. While different algorithms had different strengths and weaknesses to different NLP problems, an early paper titled Scaling to Very Very Large Corpora for Natural Language Disambiguation popularized one somewhat surprising idea. For many NLP tasks, simply providing a large corpus of examples not only improved accuracy, but it also showed that asymptotically, some algorithms yielded more improvement from working on very, very large corpora.

Although not explicitly in about NLP, the noteworthy paper The Unreasonable Effectiveness of Data emphasizes this point further while paying homage to the classic treatise The Unreasonable Effectiveness of Mathematics in the Natural Sciences.

In this episode, Kyle shares a few thoughts along these lines with Linh Da.

The discussion winds up with a brief introduction to Zipf's law. When applied to natural language, Zipf's law states that the frequency of any given word in a corpus (regardless of language) will be proportional to its rank in the frequency table.

  continue reading

529 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide