By The American Mathematical Society and American Mathematical Society. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.

People love us!

User reviews

"Love the offline function"
"This is "the" way to handle your podcast subscriptions. It's also a great way to discover new podcasts."

Securing Data in the Quantum Era

13:53
 
Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 08, 2023 19:42 (2M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 345059153 series 31056
By The American Mathematical Society and American Mathematical Society. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.
Angela Robinson explains the math behind the next generation of cryptographic algorithms. Whenever you log in to a website, send an email, or make an online purchase, you're counting on your data being sent securely, without hackers being able to crack the code. Our standard cryptographic systems hinge on mathematical problems that stump present-day computers, like finding the prime factors of a very large number. But in the coming decades, powerful quantum computers are expected to be able to rapidly solve some such problems, threatening the security of our online communications. To develop new methods that can withstand even the most sophisticated quantum computer, cryptographers are using a wide range of mathematical tools, many of which were originally developed without any real-life applications in mind.
  continue reading

133 episodes

Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 08, 2023 19:42 (2M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 345059153 series 31056
By The American Mathematical Society and American Mathematical Society. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.
Angela Robinson explains the math behind the next generation of cryptographic algorithms. Whenever you log in to a website, send an email, or make an online purchase, you're counting on your data being sent securely, without hackers being able to crack the code. Our standard cryptographic systems hinge on mathematical problems that stump present-day computers, like finding the prime factors of a very large number. But in the coming decades, powerful quantum computers are expected to be able to rapidly solve some such problems, threatening the security of our online communications. To develop new methods that can withstand even the most sophisticated quantum computer, cryptographers are using a wide range of mathematical tools, many of which were originally developed without any real-life applications in mind.
  continue reading

133 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Player FM - Podcast App
Go offline with the Player FM app!

Quick Reference Guide

Copyright 2023 | Sitemap | Privacy Policy | Terms of Service