Artwork

Content provided by MRS Bulletin. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by MRS Bulletin or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Episode 4: Optical waveguide enables self-healing soft robotic system

4:03
 
Share
 

Manage episode 358553414 series 2602554
Content provided by MRS Bulletin. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by MRS Bulletin or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

In this podcast episode, MRS Bulletin’s Laura Leay interviews Rob Shepherd from Cornell University about an adaptive-responsive self-healing soft robotic system. Shepherd’s research team has developed waveguides made of self-healing polyurethane urea crosslinked with aromatic sulfide bonds. When this material is cut, relatively weak hydrogen bonds quickly form. Disulfide exchange then occurs and, although this takes longer than the formation of hydrogen bonds, results in much stronger bonding and so recovering much of the mechanical strength of the polymer. Light is transmitted down the waveguide and, when the material is cut or punctured, the signal is attenuated. The loss of signal can be acted on by the robot and it can change its pattern of movement until the strong disulfide bonds are formed. This self-healing material absorbs more light than previous versions of the polymer that couldn’t effect a chemical repair. This level of light absorption is actually useful as it makes the robot more sensitive to damage or deformation. This work was published in a recent issue of Science Advances.

  continue reading

97 episodes

Artwork
iconShare
 
Manage episode 358553414 series 2602554
Content provided by MRS Bulletin. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by MRS Bulletin or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

In this podcast episode, MRS Bulletin’s Laura Leay interviews Rob Shepherd from Cornell University about an adaptive-responsive self-healing soft robotic system. Shepherd’s research team has developed waveguides made of self-healing polyurethane urea crosslinked with aromatic sulfide bonds. When this material is cut, relatively weak hydrogen bonds quickly form. Disulfide exchange then occurs and, although this takes longer than the formation of hydrogen bonds, results in much stronger bonding and so recovering much of the mechanical strength of the polymer. Light is transmitted down the waveguide and, when the material is cut or punctured, the signal is attenuated. The loss of signal can be acted on by the robot and it can change its pattern of movement until the strong disulfide bonds are formed. This self-healing material absorbs more light than previous versions of the polymer that couldn’t effect a chemical repair. This level of light absorption is actually useful as it makes the robot more sensitive to damage or deformation. This work was published in a recent issue of Science Advances.

  continue reading

97 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide