Artwork

Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

436: Copper Concentrates Culture Current

7:14
 
Share
 

Manage episode 275331263 series 1567470
Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

This episode: Copper electrodes, rather than killing bacteria in microbial fuel cells, allow them to generate higher densities of electric current!

Download Episode (5.0 MB, 7.2 minutes) Show notes: Microbe of the episode: Xipapillomavirus 2

News item Takeaways Copper is widely used as a way to make surfaces and materials antimicrobial, to cut down on the spread of pathogens in hospitals and other environments. Among other mechanisms, it reacts with oxygen to form reactive oxygen species that are very harsh on microbial proteins. But copper is also a good electrical conductor, which would be useful to use in microbial fuel cells, which exploit bacterial metabolism to generate electricity. Microbes form biofilms on an electrode and transfer electrons to it as a way for them to generate energy. Most such fuel cells have used graphite electrodes to avoid toxicity. In this study, fuel cell bacteria grew well on a copper electrode in an oxygen-free environment. The copper actually allowed them to increase the amount of current they produced per unit of area, as ionic copper diffused through the biofilm and allowed electrons to flow through the biofilm to the electrode from layers farther from the electrode that otherwise would not have access. Even graphite electrodes could be improved by adding these copper ions to the biofilm directly. Journal Paper: Beuth L, Pfeiffer CP, Schröder U. 2020. Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy Environ Sci 13:3102–3109.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episodes

Artwork

436: Copper Concentrates Culture Current

BacterioFiles

170 subscribers

published

iconShare
 
Manage episode 275331263 series 1567470
Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

This episode: Copper electrodes, rather than killing bacteria in microbial fuel cells, allow them to generate higher densities of electric current!

Download Episode (5.0 MB, 7.2 minutes) Show notes: Microbe of the episode: Xipapillomavirus 2

News item Takeaways Copper is widely used as a way to make surfaces and materials antimicrobial, to cut down on the spread of pathogens in hospitals and other environments. Among other mechanisms, it reacts with oxygen to form reactive oxygen species that are very harsh on microbial proteins. But copper is also a good electrical conductor, which would be useful to use in microbial fuel cells, which exploit bacterial metabolism to generate electricity. Microbes form biofilms on an electrode and transfer electrons to it as a way for them to generate energy. Most such fuel cells have used graphite electrodes to avoid toxicity. In this study, fuel cell bacteria grew well on a copper electrode in an oxygen-free environment. The copper actually allowed them to increase the amount of current they produced per unit of area, as ionic copper diffused through the biofilm and allowed electrons to flow through the biofilm to the electrode from layers farther from the electrode that otherwise would not have access. Even graphite electrodes could be improved by adding these copper ions to the biofilm directly. Journal Paper: Beuth L, Pfeiffer CP, Schröder U. 2020. Copper-bottomed: electrochemically active bacteria exploit conductive sulphide networks for enhanced electrogeneity. Energy Environ Sci 13:3102–3109.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide