#160: Data Reliability and Observability with Barr Moses


Manage episode 284518085 series 62283
By Tim Wilson, Michael Helbling, and Moe Kiss. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.

You know that sinking feeling: the automated report went out first thing Monday morning, and your Slack messages have been blowing up ever since because revenue flatlined on Saturday afternoon! You frantically start digging in (spilling your coffee in the process!) while you're torn between hoping that it's "just a data issue" (which would be good for the company but a black mark on the data team) and that it's a "real issue with the site" (not good for the business, but at least your report was accurate!). Okay. So, maybe you've never had that exact scenario, but we've all dealt with data breakages occurring in various unexpected nooks and crannies of our data ecosystem. It can be daunting to make a business case to invest in monitoring and observing all the various data pipes and tables to proactively identify data issues. But, as our data gets broader and deeper and more business-critical, can we afford not to? On this episode, we were joined by Barr Moses, co-founder and CEO of Monte Carlo to chat about practical strategies and frameworks for monitoring data and reducing data downtime! For complete show notes, including links to items mentioned in this episode and a transcript of the show, visit the show page.

186 episodes