Artwork

Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Oxford Mathematics Public Lectures: Hooke Lecture - Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere

52:22
 
Share
 

Archived series ("Inactive feed" status)

When? This feed was archived on September 19, 2020 14:07 (3+ y ago). Last successful fetch was on March 06, 2022 17:58 (2y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 226103953 series 1315470
Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
In some of the world’s rivers, an incoming high tide can arrive as a smooth jump decorated by undulations, or as a breaking wave. The river reverses direction and flows upstream. In this lecture Michael Berry explains tidal bores via analogies with tsunamis, rainbows, horizons in relativity, and ideas from quantum physics; the concept of a ‘minimal model’ in mathematical explanation; different ways in which different cultures describe the same thing; and the first unification in fundamental physics. Michael Berry is Emeritus Professor of Physics, H H Wills Physics Laboratory, University of Bristol.
  continue reading

138 episodes

Artwork
iconShare
 

Archived series ("Inactive feed" status)

When? This feed was archived on September 19, 2020 14:07 (3+ y ago). Last successful fetch was on March 06, 2022 17:58 (2y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 226103953 series 1315470
Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
In some of the world’s rivers, an incoming high tide can arrive as a smooth jump decorated by undulations, or as a breaking wave. The river reverses direction and flows upstream. In this lecture Michael Berry explains tidal bores via analogies with tsunamis, rainbows, horizons in relativity, and ideas from quantum physics; the concept of a ‘minimal model’ in mathematical explanation; different ways in which different cultures describe the same thing; and the first unification in fundamental physics. Michael Berry is Emeritus Professor of Physics, H H Wills Physics Laboratory, University of Bristol.
  continue reading

138 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide