PJim Rantschler public
[search 0]
More
Download the App!
show episodes
 
Loading …
show series
 
Jim talks with Nick Ormrod and V. Vilasini about their use of categorical probability theory to analyze the measurement problem. We discuss categorical probability theory, which allows them to abstract from particular mathematical formulations of quantum mechanics to more general ideas about states and measurements and observers than found in Hilbe…
  continue reading
 
Jim talks with Antony Valentini about the difficulties of interpretation of quantum mechanics in light of quantum gravity. In particular, Antony discusses the failure of the Born Rule due to the impossibility of normalization (the fact that probabilities must sum to 100%) at that scale, and therefore the need to interpret the wavefunction as someth…
  continue reading
 
Jim talks with Ken Wharton about how to describe entangled states as sums over histories of particle paths using the path integral method. He shows how this works for Bell-type experiments, entanglements swapping, delayed choice experiments, and the triangle network. This leads to a second way to describe what happens quantum mechanically without i…
  continue reading
 
Jim talks with Joe Davighi of the University of Zurich about the flavor unification at high energies - the merging of all leptons into one kind of particle. The discussion includes symmetries in particle physics, symmetry breaking at low temperatures, and unification schemes in general. Joe also discusses both leptoquarks and proton stability in th…
  continue reading
 
Jim talks with Gilad Gour of the University of Toronto about quantum resource theories. These are theories of largish systems that describe the relationships between possible states by the different levels of resources required for each. By using resources, a system can move from one state to another. This results in a partial order where between t…
  continue reading
 
Jim talks with James Owen Weatherall about his work on viewing general relativity as an effective field theory and where it should give way to another theory. General relativity does a very good job of describing the world we see in astronomical observations, but certain results, e.g. singularities, and certain limits, e.g. the Planck scale, hint t…
  continue reading
 
Jim talks with Michal Eckstein of the Copernicus Institute for Interdisciplinary Studies about how two different kinds of ordering, chronological and causal, give rise to a robust idea of time. Additionally, we discuss the Experiment Paradox, a generalization of other measurement-type paradoxes in physics. Show Notes: http://frontiers.physicsfm.com…
  continue reading
 
Jim talks with Blake Stacey about recent attempts to replace Born's rule. Born's rule is the principle used in quantum mechanics that associates quantum states to the probability of measurement. There has been a recent interest in Quantum Foundations to try to find a less arbitrary rationale for this procedure. Show Notes: http://frontiers.physicsf…
  continue reading
 
Jim talks with Blake Stacey about Gleason's Theorem, a foundational topic in the foundations of quantum mechanics. Gleason's theorem gives us a set of characteristic states for a measurement and the probability rule associated measuring them. This is the first part of the interview. The second part will discuss recent attempts to replace the Born R…
  continue reading
 
Jim and Randy talk about how special relativity might be amended to incorporate a minimum length scale. Such scales are common in quantum gravity theories, and in the limit where both QM and GR are less important, QG should induce first order corrections to SR. We then talk about how these corrections seem to lead to unreasonable paradoxes. Show No…
  continue reading
 
Loading …

Quick Reference Guide