Artwork

Content provided by Cambridge University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Cambridge University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Random Geometry

Share
 

Archived series ("Inactive feed" status)

When? This feed was archived on June 16, 2018 01:42 (6y ago). Last successful fetch was on October 04, 2017 05:41 (6+ y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage series 1602342
Content provided by Cambridge University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Cambridge University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
A new frontier has emerged at the interface between probability, geometry, and analysis, with a central target to produce a coherent theory of the geometry of random structures. The principal question is the following: within a given structure, what is the interplay between randomness and geometry? More precisely, does the geometry appear to be random at every scale (i.e. fractal), or do fluctuations "average out" at sufficiently large scales? Can the global geometry be described by taking a suitable scaling limit that allows for concrete computations? Spectacular progress has been made over the last ten years in this domain. The goal of the programme is to gather experts from probability, geometry, analysis and other connected areas, in order to study aspects of this question in some paradigmatic situations. Topics of particular relevance include the Gaussian Free Field, random planar maps and Liouville quantum gravity, in connection with conformally invariant scaling limits; spin glass models and branching random walks; percolation and random graphs; and random walks on graphs and groups in the case where the geometry is determined by some algebraic ambient structure.
  continue reading

121 episodes

Artwork

Random Geometry

updated

iconShare
 

Archived series ("Inactive feed" status)

When? This feed was archived on June 16, 2018 01:42 (6y ago). Last successful fetch was on October 04, 2017 05:41 (6+ y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage series 1602342
Content provided by Cambridge University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Cambridge University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
A new frontier has emerged at the interface between probability, geometry, and analysis, with a central target to produce a coherent theory of the geometry of random structures. The principal question is the following: within a given structure, what is the interplay between randomness and geometry? More precisely, does the geometry appear to be random at every scale (i.e. fractal), or do fluctuations "average out" at sufficiently large scales? Can the global geometry be described by taking a suitable scaling limit that allows for concrete computations? Spectacular progress has been made over the last ten years in this domain. The goal of the programme is to gather experts from probability, geometry, analysis and other connected areas, in order to study aspects of this question in some paradigmatic situations. Topics of particular relevance include the Gaussian Free Field, random planar maps and Liouville quantum gravity, in connection with conformally invariant scaling limits; spin glass models and branching random walks; percolation and random graphs; and random walks on graphs and groups in the case where the geometry is determined by some algebraic ambient structure.
  continue reading

121 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide