Artwork

Content provided by Salesforce Engineering. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Salesforce Engineering or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

104. The Evolution of Service Meshes

 
Share
 

Manage episode 294560467 series 2501898
Content provided by Salesforce Engineering. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Salesforce Engineering or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Luke Kysow is a software engineer at HashiCorp, and he's in conversation with host Robert Blumen. The subject of their discussion is on the idea of a service mesh. As software architecture moved towards microservices, several reusable pieces of code needed to be configured for each application. On a macro scale, load balancers need to be configuring to control where packets are flowing; on a micro level, things like authorization and rate limiting for data access need to be set up for each application. This is where a service mesh came into being. As each microservice began to call out to each other, shared logic was taken out and placed into a separate layer. Now, every inbound and outbound connection--whether between services or from external clients--goes through the same service mesh layer.

Extracting common functionality out like this has several benefits. As containerization enables organizations to become more polyglot, service meshes provide the opportunity to write operational logic once, and reuse it everywhere, no matter the base application's language. Similarly, each application does not need to rely on its own bespoke dependency library for circuit breakers, rate limiting, authorization and so on. The service mesh provides a single place for the logic to be configured and everywhere. Service meshes can also be useful in metrics aggregation. If every packet of communication must traverse the service mesh layer, it becomes the de facto location to set up counters and gauges for actions that you're interested in, rather than having each application send out non-unique data.

Luke notes that while it's important for engineers to understand the value of a service mesh, it's just as important to know when such a layer will work for your application. It depends on how big your organization is, and the challenges you're trying to solve, but it's not an absolutely essential piece for every stack. Even a hybrid approach, where some logic is shared and some is unique to each microservice, can be of some benefit, without necessarily extracting everything out.

Links from this episode

  continue reading

132 episodes

Artwork

104. The Evolution of Service Meshes

Code[ish]

203 subscribers

published

iconShare
 
Manage episode 294560467 series 2501898
Content provided by Salesforce Engineering. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Salesforce Engineering or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Luke Kysow is a software engineer at HashiCorp, and he's in conversation with host Robert Blumen. The subject of their discussion is on the idea of a service mesh. As software architecture moved towards microservices, several reusable pieces of code needed to be configured for each application. On a macro scale, load balancers need to be configuring to control where packets are flowing; on a micro level, things like authorization and rate limiting for data access need to be set up for each application. This is where a service mesh came into being. As each microservice began to call out to each other, shared logic was taken out and placed into a separate layer. Now, every inbound and outbound connection--whether between services or from external clients--goes through the same service mesh layer.

Extracting common functionality out like this has several benefits. As containerization enables organizations to become more polyglot, service meshes provide the opportunity to write operational logic once, and reuse it everywhere, no matter the base application's language. Similarly, each application does not need to rely on its own bespoke dependency library for circuit breakers, rate limiting, authorization and so on. The service mesh provides a single place for the logic to be configured and everywhere. Service meshes can also be useful in metrics aggregation. If every packet of communication must traverse the service mesh layer, it becomes the de facto location to set up counters and gauges for actions that you're interested in, rather than having each application send out non-unique data.

Luke notes that while it's important for engineers to understand the value of a service mesh, it's just as important to know when such a layer will work for your application. It depends on how big your organization is, and the challenges you're trying to solve, but it's not an absolutely essential piece for every stack. Even a hybrid approach, where some logic is shared and some is unique to each microservice, can be of some benefit, without necessarily extracting everything out.

Links from this episode

  continue reading

132 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide