show episodes
 
Loading …
show series
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Mihir Pendharkar of Stanford University about characterizing electronic properties of twistronics materials. Twistronics refers to a type of electronic device consisting of two-dimensional materials layered at a relative twist angle, forming a new periodic structure known as moiré super…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Falon Kalutantirige from the University of Illinois Urbana-Champaign and Ying Li from the University of Wisconsin-Madison about their approach and discovery when characterizing nanovoids in polymer films. Using polyamide (PA) membranes as their subject of study, the researchers applied g…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Alexandre Dmitriev from the University of Gothenburg, Sweden about his group’s computational model of a three-dimensional metamaterial exhibiting a magnetoelectric effect—known as the Tellegen effect—when exposed to light. The building blocks of the metamaterial are comprised of disks of…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Antonio Dominguez-Alfaro from the University of Cambridge, UK about the development of a single-step manufacturing approach for a multimaterial 3D-printing method. The research team created two inks. One ink is a polymeric deep eutectic solvent – polyDES – made by combining and heating t…
  continue reading
 
In this podcast episode, MRS Bulletin’s Elizabeth Wilson interviews postdoctoral researcher M. Iqbal Bakti Utama of Northwestern University about a method allowing single photon production without defect. Aryl diazonium chemistry has been used in the past to functionalize the surface of carbon nanotubes. Utama’s group found that this chemistry also…
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Irmgard Bischofberger of the Massachusetts Institute of Technology about her investigation of how chirality emerges in nature. She uses liquid crystal molecules of disodium chromoglycate in her studies. When the molecules are dissolved in water, they form linear rods. The research group…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Eric Pop, Xiangjin Wu, and Asir Intisar Khan from Stanford University about their work building a phase-change memory superlattice at the nanoscale. They created the superlattice by alternating layers of antimony-tellurium nanoclusters with a nanocomposite made from germanium, antimony, …
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Magalí Lingenfelder from the École Polytechnique Fédérale de Lausanne, Switzerland about her group’s discovery of the switching mechanism behind H-bond-linked two-dimensional networks. The hydrogen bonding ability was tuned by comparing carboxylates to aldehydes. Lingenfelder’s group fou…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Aram Amassian from North Carolina State University about his group’s achievements using RoboMapper, a materials acceleration platform. In researchers’ quest to run environmentally-conscious laboratories, Amassian offers a solution that focuses on characterization of materials. Having fou…
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Kaveh Ahadi from The Ohio State University about a material his group developed that maintains superconductivity in a magnetic field. The researchers grew a film of lanthanum manganite on a crystal of potassium tantalate. When lowered to the temperature of 2 Kelvin, the material is a su…
  continue reading
 
In this podcast episode, MRS Bulletin’s Elizabeth Wilson interviews Manos Mavrikakis from the University of Wisconsin–Madison about his group’s theoretical work on real-world industrial catalytic conditions. It is often assumed that most catalyst surface atoms stay in place during a reaction, firmly bonded to their metal neighbors. However, Mavrika…
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Nathan Gabor from the University of California, Riverside about his group’s work on imaging and directing the flow of electrons in electronic devices. They designed their device by taking a crystal of yttrium iron garnet, which does not conduct electricity, and putting a nanometers-thic…
  continue reading
 
In this podcast episode, MRS Bulletin’s Rahul Rao interviews Fereshte Ghahari of George Mason University about the use of a scanning tunneling microscope (STM) to measure the electronic and magnetic properties of moiré quantum materials. Ghahari and collaborators twisted two layers of graphene at a specific angle, then chilled the material to suppr…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-n…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Professor Jerry Qi and postdoctoral researcher Mingzhe Li of the Georgia Institute of Technology about their new technique to 3D print silica glass. After using two-photon polymerization to cross-link poly-dimethylsiloxane, Qi’s research team used deep UV to convert the polymer into sili…
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Surabhi Madhvapathy of Northwestern University about an implantable bioelectronics system that can perform early detection of kidney transplant rejection in rats. Madhvapathy and her colleagues have developed a wireless sensor that attaches to the kidney itself. The biosensor measures t…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Kento Katagiri, a postdoctoral scholar at Stanford University, about the propagation speed of dislocations in materials. Using an X-ray free electron laser to collect data from single-crystal diamond, Katagiri and colleagues have determined the velocity of wave propagation to be in the t…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Stanford University’s Jennifer Dionne and her PhD student Fareeha Safir and their colleague Amr. Saleh from Cairo University about their work on identifying bacteria in complex samples. Instead of culturing bacteria then identifying them using specific methods such as a polymerase chain …
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Alice Soragni of the University of California, Los Angeles about her work in precision oncology. Rather than sequence the DNA of a patient’s tumor, Soragni uses bioprinting to create organoids from the patient’s cells. She then adds various drugs to the cells to directly test their resp…
  continue reading
 
While thermodynamics suggests that water sorption is more favorable at a low temperature, MRS Bulletin podcaster Laura Leay interviews post-doctoral researcher Xinyue Liu from the Massachusetts Institute of Technology (MIT) who reports a hydrogel that can adsorb more water at elevated temperatures. Liu and the research team from MIT and the Univers…
  continue reading
 
Many industrial processes require heat or create it as a by-product. Now, Takayoshi Katase from the Tokyo Institute of Technology has found a way to harness this heat in an eco-friendly way, as he explains in an interview with MRS Bulletin podcaster Laura Leay. One way to harness this heat is to use thermoelectric devices to produce electricity via…
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Xuchen Wang of Karlsruhe Institute of Technology in Germany about his work on photonic time crystals. While conventional crystals are composed of repeating unit cells in space, such as eight carbon atoms arranged in a cube to form a diamond, a photonic time crystal has a structure that …
  continue reading
 
Little research has been done on the magnetic properties of high-entropy oxides, a challenge taken up by Alannah Hallas at the University of British Columbia in Canada, interviewed by MRS Bulletin podcaster Laura Leay. Hallas’s research group began by choosing five elements that would be magnetic and combining them in oxide form, rendering a spinel…
  continue reading
 
In this podcast episode, MRS Bulletin’s Sophia Chen interviews Widi Moestopo, a former graduate student in Julia Greer’s laboratory at the California Institute of Technology (Caltech) and now a postdoc at Lawrence Livermore National Laboratory about their work incorporating microknots in architected materials. Using two-photon lithography, Moestopo…
  continue reading
 
In this podcast episode, MRS Bulletin’s Laura Leay interviews Dominic Bresser from the Helmholtz Institute Ulm and the Karlsruhe Institute of Technology in Germany about the suitability of a nanotwinned copper foil as a current collector for the negative electrode in“zero excess” lithium−metal batteries. The nanotwinned copper foil has an essential…
  continue reading
 
Loading …

Quick Reference Guide