Go offline with the Player FM app!
Episode 2: Biocompatible piezoelectric materials promote neural regeneration
Manage episode 398553876 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how the composite material would interact with neural stem cells. They found that the piezolectrically activated composites allowed the cells to spread across the surface of the material and saw an increase in the amount of neurons. Usually the use of piezoelectric materials in tissue engineering requires mechanical stimulation from either movement of the body or the application of ultrasound. In this research, no additional mechanical stimulation was required. This work was published in a recent issue of Advanced Engineering Materials.
99 episodes
Manage episode 398553876 series 2602554
In this podcast episode, MRS Bulletin’s Laura Leay interviews Hamideh Khanbareh and Vlad Jarkov of the University of Bath in the UK about an application they introduced for using piezoelectric materials in tissue engineering. The researchers fabricated a composite by combining polydimethylsiloxane with a piezoelectric material of potassium-sodium-niobate that is compatible with cell lines similar to neurons. They then studied how the composite material would interact with neural stem cells. They found that the piezolectrically activated composites allowed the cells to spread across the surface of the material and saw an increase in the amount of neurons. Usually the use of piezoelectric materials in tissue engineering requires mechanical stimulation from either movement of the body or the application of ultrasound. In this research, no additional mechanical stimulation was required. This work was published in a recent issue of Advanced Engineering Materials.
99 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.