Artwork

Content provided by Johns Hopkins Malaria Research Institute and Johns Hopkins Bloomberg School of Public Health. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Johns Hopkins Malaria Research Institute and Johns Hopkins Bloomberg School of Public Health or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

KIC5: A New Piece in the Puzzle of Artemisinin Resistance

1:07
 
Share
 

Manage episode 386124477 series 3531530
Content provided by Johns Hopkins Malaria Research Institute and Johns Hopkins Bloomberg School of Public Health. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Johns Hopkins Malaria Research Institute and Johns Hopkins Bloomberg School of Public Health or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Drug resistance is on the rise, but genetics can help us understand what's driving it. Here, researchers identify a protein associated with resistance to artemisinin, a key malaria drug.

Transcript

Artemisinin-based combination therapies (ACT) are considered the most effective method to treat malaria. Yet drug resistance to them is on the rise, spreading from Southeast Asia to Africa, becoming a real problem. A genetic approach to drug resistance can help us understand the genes responsible for this. Artemisinin resistance has long been associated with mutations to a protein called Kelch13. By screening the parasite genome, researchers have identified another protein associated with resistance to the drug. Called KIC5, this protein helps maintain nuclear homeostasis – balance within the parasite’s cell – as it lives in human red blood cells. When expressed, it helps the parasite overcome artemisinin stress by supporting DNA repair and other mitochondrial activity. But when it’s disrupted, the parasite can’t deal with this stress and becomes sensitized to the drug. Almost like flipping a switch, disrupting KIC5 makes artemisinin work again.

Source

Protein KIC5 is a novel regulator of artemisinin stress response in the malaria parasite Plasmodium falciparum

About The Podcast

The Johns Hopkins Malaria Minute podcast is produced by the Johns Hopkins Malaria Research Institute to highlight impactful malaria research and to share it with the global community.

  continue reading

65 episodes

Artwork
iconShare
 
Manage episode 386124477 series 3531530
Content provided by Johns Hopkins Malaria Research Institute and Johns Hopkins Bloomberg School of Public Health. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Johns Hopkins Malaria Research Institute and Johns Hopkins Bloomberg School of Public Health or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Drug resistance is on the rise, but genetics can help us understand what's driving it. Here, researchers identify a protein associated with resistance to artemisinin, a key malaria drug.

Transcript

Artemisinin-based combination therapies (ACT) are considered the most effective method to treat malaria. Yet drug resistance to them is on the rise, spreading from Southeast Asia to Africa, becoming a real problem. A genetic approach to drug resistance can help us understand the genes responsible for this. Artemisinin resistance has long been associated with mutations to a protein called Kelch13. By screening the parasite genome, researchers have identified another protein associated with resistance to the drug. Called KIC5, this protein helps maintain nuclear homeostasis – balance within the parasite’s cell – as it lives in human red blood cells. When expressed, it helps the parasite overcome artemisinin stress by supporting DNA repair and other mitochondrial activity. But when it’s disrupted, the parasite can’t deal with this stress and becomes sensitized to the drug. Almost like flipping a switch, disrupting KIC5 makes artemisinin work again.

Source

Protein KIC5 is a novel regulator of artemisinin stress response in the malaria parasite Plasmodium falciparum

About The Podcast

The Johns Hopkins Malaria Minute podcast is produced by the Johns Hopkins Malaria Research Institute to highlight impactful malaria research and to share it with the global community.

  continue reading

65 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide