By The American Mathematical Society and American Mathematical Society. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.

People love us!

User reviews

"Love the offline function"
"This is "the" way to handle your podcast subscriptions. It's also a great way to discover new podcasts."

Keeping the Lights On

14:39
 
Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 08, 2023 19:42 (2M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 351132828 series 31056
By The American Mathematical Society and American Mathematical Society. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.
Rodney Kizito from U.S. Department of Energy discusses solar energy, mathematics, and microgrids. When you flip a switch to turn on a light, where does that energy come from? In a traditional power grid, electricity is generated at large power plants and then transmitted long distances. But now, individual homes and businesses with solar panels can generate some or all of their own power and even send energy into the rest of the grid. Modifying the grid so that power can flow in both directions depends on mathematics. With linear programming and operations research, engineers design efficient and reliable systems that account for constraints like the electricity demand at each location, the costs of solar installation and distribution, and the energy produced under different weather conditions. Similar mathematics helps create "microgrids" — small, local systems that can operate independent of the main grid.
  continue reading

133 episodes

Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on April 08, 2023 19:42 (2M ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 351132828 series 31056
By The American Mathematical Society and American Mathematical Society. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.
Rodney Kizito from U.S. Department of Energy discusses solar energy, mathematics, and microgrids. When you flip a switch to turn on a light, where does that energy come from? In a traditional power grid, electricity is generated at large power plants and then transmitted long distances. But now, individual homes and businesses with solar panels can generate some or all of their own power and even send energy into the rest of the grid. Modifying the grid so that power can flow in both directions depends on mathematics. With linear programming and operations research, engineers design efficient and reliable systems that account for constraints like the electricity demand at each location, the costs of solar installation and distribution, and the energy produced under different weather conditions. Similar mathematics helps create "microgrids" — small, local systems that can operate independent of the main grid.
  continue reading

133 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Player FM - Podcast App
Go offline with the Player FM app!

Quick Reference Guide

Copyright 2023 | Sitemap | Privacy Policy | Terms of Service