Artwork

Content provided by Arif Ashraf. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Arif Ashraf or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

S1E6 | Vikram Jathar | Leaf size regulation

32:40
 
Share
 

Manage episode 323808651 series 3299153
Content provided by Arif Ashraf. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Arif Ashraf or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Article: Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice
Journal: New Phytologist
Year: 2022
Guest: Vikram Jathar
Host: Arif Ashraf

Abstract

Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size.

Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process.

The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length.

Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.

Cover art design: Ragib Anjum

  continue reading

27 episodes

Artwork
iconShare
 
Manage episode 323808651 series 3299153
Content provided by Arif Ashraf. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Arif Ashraf or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Article: Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice
Journal: New Phytologist
Year: 2022
Guest: Vikram Jathar
Host: Arif Ashraf

Abstract

Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size.

Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process.

The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length.

Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.

Cover art design: Ragib Anjum

  continue reading

27 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide