Artwork

Content provided by Rob. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Rob or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Autonomous LLM-driven research from data to human-verifiable research papers

31:11
 
Share
 

Manage episode 418027445 series 2954468
Content provided by Rob. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Rob or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
As AI promises to accelerate scientific discovery, it remains unclear whether fully AI-driven research is possible and whether it can adhere to key scientific values, such as transparency, traceability and verifiability. Mimicking human scientific practices, we built data-to-paper, an automation platform that guides interacting LLM agents through a complete stepwise research process, while programmatically back-tracing information flow and allowing human oversight and interactions. In autopilot mode, provided with annotated data alone, data-to-paper raised hypotheses, designed research plans, wrote and debugged analysis codes, generated and interpreted results, and created complete and information-traceable research papers. Even though research novelty was relatively limited, the process demonstrated autonomous generation of de novo quantitative insights from data. For simple research goals, a fully-autonomous cycle can create manuscripts which recapitulate peer-reviewed publications without major errors in about 80-90%, yet as goal complexity increases, human co-piloting becomes critical for assuring accuracy. Beyond the process itself, created manuscripts too are inherently verifiable, as information-tracing allows to programmatically chain results, methods and data. Our work thereby demonstrates a potential for AI-driven acceleration of scientific discovery while enhancing, rather than jeopardizing, traceability, transparency and verifiability.
2024: Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay, Roy Kishony
https://arxiv.org/pdf/2404.17605
  continue reading

295 episodes

Artwork
iconShare
 
Manage episode 418027445 series 2954468
Content provided by Rob. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Rob or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
As AI promises to accelerate scientific discovery, it remains unclear whether fully AI-driven research is possible and whether it can adhere to key scientific values, such as transparency, traceability and verifiability. Mimicking human scientific practices, we built data-to-paper, an automation platform that guides interacting LLM agents through a complete stepwise research process, while programmatically back-tracing information flow and allowing human oversight and interactions. In autopilot mode, provided with annotated data alone, data-to-paper raised hypotheses, designed research plans, wrote and debugged analysis codes, generated and interpreted results, and created complete and information-traceable research papers. Even though research novelty was relatively limited, the process demonstrated autonomous generation of de novo quantitative insights from data. For simple research goals, a fully-autonomous cycle can create manuscripts which recapitulate peer-reviewed publications without major errors in about 80-90%, yet as goal complexity increases, human co-piloting becomes critical for assuring accuracy. Beyond the process itself, created manuscripts too are inherently verifiable, as information-tracing allows to programmatically chain results, methods and data. Our work thereby demonstrates a potential for AI-driven acceleration of scientific discovery while enhancing, rather than jeopardizing, traceability, transparency and verifiability.
2024: Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay, Roy Kishony
https://arxiv.org/pdf/2404.17605
  continue reading

295 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide