Artwork

Content provided by Rob. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Rob or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Multi-Head RAG: Solving Multi-Aspect Problems with LLMs

33:39
 
Share
 

Manage episode 424762655 series 2954468
Content provided by Rob. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Rob or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving motivation is that different attention heads can learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, synthetic datasets, and real-world use cases to demonstrate MRAG's effectiveness, showing improvements of up to 20% in relevance over standard RAG baselines. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarking tools like RAGAS as well as different classes of data stores.
2024: Maciej Besta, Aleš Kubíček, Roman Niggli, Robert Gerstenberger, Lucas Weitzendorf, Mingyuan Chi, Patrick Iff, Joanna Gajda, Piotr Nyczyk, Jurgen Muller, H. Niewiadomski, Marcin Chrapek, Michal Podstawski, Torsten Hoefler
https://arxiv.org/pdf/2406.05085
  continue reading

298 episodes

Artwork
iconShare
 
Manage episode 424762655 series 2954468
Content provided by Rob. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Rob or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving motivation is that different attention heads can learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, synthetic datasets, and real-world use cases to demonstrate MRAG's effectiveness, showing improvements of up to 20% in relevance over standard RAG baselines. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarking tools like RAGAS as well as different classes of data stores.
2024: Maciej Besta, Aleš Kubíček, Roman Niggli, Robert Gerstenberger, Lucas Weitzendorf, Mingyuan Chi, Patrick Iff, Joanna Gajda, Piotr Nyczyk, Jurgen Muller, H. Niewiadomski, Marcin Chrapek, Michal Podstawski, Torsten Hoefler
https://arxiv.org/pdf/2406.05085
  continue reading

298 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide