Artwork

Content provided by Ethan Siegel. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ethan Siegel or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Starts With A Bang #90 - How Galaxies Grow Up

1:37:14
 
Share
 

Manage episode 355106658 series 116631
Content provided by Ethan Siegel. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ethan Siegel or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

One of the great advances of 20th and 21st century science has been, for the first time to show us two things: how the Universe began and what the Universe looks like today. The modern frontier is all about the in-between stages: how did the Universe grow up? How did it go from particles to atoms to the first stars and galaxies to the modern Milky Way, Local Group, and Universe-at-large? It's a question that, the more deeply we answer it, the greater the number of details that emerge, requiring us to make a special effort to pin each one down.

For this episode, I'm so pleased to welcome Dr. Ivanna Escala to the podcast: an expert in how stars and stellar properties within the Local Group can reveal not only its stellar history, but its history of galactic assembly. While the Milky Way has had a few major mergers, its most recent was a whopping ~10 billion years ago. Andromeda, our Local Group's other large galaxy, has a remarkably different story: with a major merger that occurred only 2-4 billion years ago!

Have a listen and enjoy, and thanks to Avenues Online for being our sponsor!

(This image, assembled from very long wavelengths of light of the neighboring Andromeda Galaxy, shows features within Andromeda's galactic disk as well as the gas clouds of neutral hydrogen found in Andromeda's galactic halo. By examining these features, as well as streams and stars in and around Andromeda, we can reconstruct precisely how this galaxy came to be the way it is today. Credit: NRAO/AUI/NSF, WSRT)

  continue reading

109 episodes

Artwork
iconShare
 
Manage episode 355106658 series 116631
Content provided by Ethan Siegel. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Ethan Siegel or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

One of the great advances of 20th and 21st century science has been, for the first time to show us two things: how the Universe began and what the Universe looks like today. The modern frontier is all about the in-between stages: how did the Universe grow up? How did it go from particles to atoms to the first stars and galaxies to the modern Milky Way, Local Group, and Universe-at-large? It's a question that, the more deeply we answer it, the greater the number of details that emerge, requiring us to make a special effort to pin each one down.

For this episode, I'm so pleased to welcome Dr. Ivanna Escala to the podcast: an expert in how stars and stellar properties within the Local Group can reveal not only its stellar history, but its history of galactic assembly. While the Milky Way has had a few major mergers, its most recent was a whopping ~10 billion years ago. Andromeda, our Local Group's other large galaxy, has a remarkably different story: with a major merger that occurred only 2-4 billion years ago!

Have a listen and enjoy, and thanks to Avenues Online for being our sponsor!

(This image, assembled from very long wavelengths of light of the neighboring Andromeda Galaxy, shows features within Andromeda's galactic disk as well as the gas clouds of neutral hydrogen found in Andromeda's galactic halo. By examining these features, as well as streams and stars in and around Andromeda, we can reconstruct precisely how this galaxy came to be the way it is today. Credit: NRAO/AUI/NSF, WSRT)

  continue reading

109 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide