Artwork

Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Privacy-preserving Computation of Fairness for ML Systems: Acknowledgement & References

10:53
 
Share
 

Manage episode 393667483 series 3474385
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/privacy-preserving-computation-of-fairness-for-ml-systems-acknowledgement-and-references.
Discover Fairness as a Service (FaaS), an architecture and protocol ensuring algorithmic fairness without exposing the original dataset or model details.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #ml-systems, #ml-fairness, #faas, #fairness-in-ai, #fairness-as-a-service, #fair-machine-learning, #fairness-computation, #cryptograms, and more.
This story was written by: @ashumerie. Learn more about this writer by checking @ashumerie's about page, and for more stories, please visit hackernoon.com.
Fairness as a Service (FaaS) revolutionizes algorithmic fairness audits by preserving privacy without accessing original datasets or model specifics. This paper presents FaaS as a trustworthy framework employing encrypted cryptograms and Zero Knowledge Proofs. Security guarantees, a proof-of-concept implementation, and performance experiments showcase FaaS as a promising avenue for calculating and verifying fairness in AI algorithms, addressing challenges in privacy, trust, and performance.

  continue reading

400 episodes

Artwork
iconShare
 
Manage episode 393667483 series 3474385
Content provided by HackerNoon. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by HackerNoon or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/privacy-preserving-computation-of-fairness-for-ml-systems-acknowledgement-and-references.
Discover Fairness as a Service (FaaS), an architecture and protocol ensuring algorithmic fairness without exposing the original dataset or model details.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #ml-systems, #ml-fairness, #faas, #fairness-in-ai, #fairness-as-a-service, #fair-machine-learning, #fairness-computation, #cryptograms, and more.
This story was written by: @ashumerie. Learn more about this writer by checking @ashumerie's about page, and for more stories, please visit hackernoon.com.
Fairness as a Service (FaaS) revolutionizes algorithmic fairness audits by preserving privacy without accessing original datasets or model specifics. This paper presents FaaS as a trustworthy framework employing encrypted cryptograms and Zero Knowledge Proofs. Security guarantees, a proof-of-concept implementation, and performance experiments showcase FaaS as a promising avenue for calculating and verifying fairness in AI algorithms, addressing challenges in privacy, trust, and performance.

  continue reading

400 episodes

Semua episod

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play