Artwork

Content provided by The Molecular Programming Interest Group. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Molecular Programming Interest Group or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Brenda Rubenstein: Storage and Computing with Small Molecules: A Tutorial

1:03:40
 
Share
 

Manage episode 286420785 series 2836862
Content provided by The Molecular Programming Interest Group. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Molecular Programming Interest Group or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

For our first event, Brenda Rubenstein has presented a tutorial on her lab's approach to storage and computation, making use of the chemical properties of a variety of types of small molecules. This was a real tour-de-force, and is worth a watch. Be sure to listen to our subsequent Q&A session in a couple episodes time!

Abstract: As transistors near the size of molecules, computer engineers are increasingly finding themselves asking a once idle question: how can we store information in and compute using chemistry? While molecular storage and computation have traditionally leveraged the sequence diversity of polymers such as DNA, our team has recently demonstrated that vast amounts of information can also be stored in unordered mixtures of small molecules. In this tutorial, I will begin by explaining this new, more general molecular storage paradigm and how polymers fit into it. I will then describe how our team has married combinatorial chemical synthesis with high resolution spectrometry to experimentally realize this paradigm and store GBs of information in small molecules and metabolites. Lastly, I will end with a discussion of how these storage principles can be combined with machine learning techniques to realize fully molecular neural networks for pattern recognition and image processing. The new paradigm discussed in this tutorial will lend itself to new means of increasing molecular storage capacity and interpreting the many small molecule chemistries that underlie "computing" within the body.

---
Find more information at the episode page here:
https://podcast.molpi.gs/media/rubenstein-b-2b86de754345/

  continue reading

28 episodes

Artwork
iconShare
 
Manage episode 286420785 series 2836862
Content provided by The Molecular Programming Interest Group. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Molecular Programming Interest Group or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

For our first event, Brenda Rubenstein has presented a tutorial on her lab's approach to storage and computation, making use of the chemical properties of a variety of types of small molecules. This was a real tour-de-force, and is worth a watch. Be sure to listen to our subsequent Q&A session in a couple episodes time!

Abstract: As transistors near the size of molecules, computer engineers are increasingly finding themselves asking a once idle question: how can we store information in and compute using chemistry? While molecular storage and computation have traditionally leveraged the sequence diversity of polymers such as DNA, our team has recently demonstrated that vast amounts of information can also be stored in unordered mixtures of small molecules. In this tutorial, I will begin by explaining this new, more general molecular storage paradigm and how polymers fit into it. I will then describe how our team has married combinatorial chemical synthesis with high resolution spectrometry to experimentally realize this paradigm and store GBs of information in small molecules and metabolites. Lastly, I will end with a discussion of how these storage principles can be combined with machine learning techniques to realize fully molecular neural networks for pattern recognition and image processing. The new paradigm discussed in this tutorial will lend itself to new means of increasing molecular storage capacity and interpreting the many small molecule chemistries that underlie "computing" within the body.

---
Find more information at the episode page here:
https://podcast.molpi.gs/media/rubenstein-b-2b86de754345/

  continue reading

28 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide