Artwork

Content provided by The Molecular Programming Interest Group. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Molecular Programming Interest Group or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Katherine Dunn

47:27
 
Share
 

Manage episode 350273577 series 2836862
Content provided by The Molecular Programming Interest Group. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Molecular Programming Interest Group or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Join the molpigs team for a discussion with Prof. Katherine Dunn from the University of Edinburgh about her work on using DNA nanotechnology for medical applications and her exciting new ideas regarding "electrosynbionics," using biological engineering to tackle hard problems in energy production and storage. She also discusses her experiences transitioning from terahertz spectroscopy to biophysics and the challenges in teaching and mentoring students to prepare them for a variety of career paths in today's interdisciplinary world.

Katherine completed her undergraduate degree in physics at the University of Oxford. She started a PhD there in Terahertz Spectroscopy before seeing the light and changing to DNA Origami. She has continued to study molecular programming within an engineering context, working on DNA nanomachines for bioelectronic computing at the University of York. She is now a Senior Lecturer at the University of Edinburgh, and has been named as one of the Top 50 Women in Engineering 2021 by the Women’s Engineering Society.

---
Find more information at the episode page here:
https://podcast.molpi.gs/media/dunn-k-68bc3b6fe46f8f0d/

  continue reading

28 episodes

Artwork

Katherine Dunn

The molpigs Podcast

published

iconShare
 
Manage episode 350273577 series 2836862
Content provided by The Molecular Programming Interest Group. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The Molecular Programming Interest Group or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Join the molpigs team for a discussion with Prof. Katherine Dunn from the University of Edinburgh about her work on using DNA nanotechnology for medical applications and her exciting new ideas regarding "electrosynbionics," using biological engineering to tackle hard problems in energy production and storage. She also discusses her experiences transitioning from terahertz spectroscopy to biophysics and the challenges in teaching and mentoring students to prepare them for a variety of career paths in today's interdisciplinary world.

Katherine completed her undergraduate degree in physics at the University of Oxford. She started a PhD there in Terahertz Spectroscopy before seeing the light and changing to DNA Origami. She has continued to study molecular programming within an engineering context, working on DNA nanomachines for bioelectronic computing at the University of York. She is now a Senior Lecturer at the University of Edinburgh, and has been named as one of the Top 50 Women in Engineering 2021 by the Women’s Engineering Society.

---
Find more information at the episode page here:
https://podcast.molpi.gs/media/dunn-k-68bc3b6fe46f8f0d/

  continue reading

28 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide