Go offline with the Player FM app!
AF - Finding Deception in Language Models by Esben Kran
Fetch error
Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on September 26, 2024 16:04 ()
What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.
Manage episode 435312648 series 2997284
This June, Apart Research and Apollo Research joined forces to host the Deception Detection Hackathon. Bringing together students, researchers, and engineers from around the world to tackle a pressing challenge in AI safety; preventing AI from deceiving humans and overseers.
The hackathon took place both online and in multiple physical locations simultaneously. Marius Hobbhahn, the CEO of Apollo Research, kicked off the hackathon with a keynote talk about evaluating deception in AI with white-box and black-box methods. You can watch his talk
here. We also had talks by Jacob Haimes, an Apart fellow, and Mikita Balesni, a research scientist at Apollo Research.
This post details the top 8 projects, multiple of which are currently being developed further in Apart Lab. In total, we had 189 participants and 21 final entries.
Sandbagging Detection through Model Degradation
By Cam Tice, Philipp Alexander Kreer, Fedor Ryzhenkov, Nathan Helm-Burger, Prithviraj Singh Shahani
The team introduced a new approach to detect AI sandbagging, a form of deception where an AI model strategically underperforms during evaluation to hide its true capabilities. The assumption behind their project is that sandbagging is a more complex task than showing the true capabilities.
In the graph above, you can see how they gradually add noise to the model's parameters and evaluate the models during this process. Sandbagging models consistently improve in performance right before the noise level causes a normal model to lose the capability.
It is a straightforward, inexpensive technique that doesn't require prior assumptions about how sandbagging is represented within the model. They successfully detected sandbagging behavior in two open-source LLMs: An 8B Llama 3 Instruct model and Phi 3 small instruct model. This approach offers a practical and accessible method for identifying potential deception in AI systems.
Read the full project here.
Detecting and Controlling Deceptive Representation in LLMs with Representational Engineering
By Avyay M Casheekar, Kaushik Sanjay Prabhakar, Kanishk Rath, Sienka Dounia
The team focused on detecting and mitigating sandbagging in AI models using recent methods for understanding activations. They fine-tuned a Llama 3 8B model on a custom dataset of deceptive and honest scenarios, then used Linear Artificial Tomography (LAT) scans to detect deceptive behaviors in the internal representations of the LLM.
The team's technique not only identified deceptive behaviors, but also showed promise in mitigating them. Importantly, their approach demonstrated good generalization to out-of-distribution scenarios, suggesting its potential robustness in real-world applications.
Read the full project here.
Detecting Deception in GPT-3.5-turbo: A Metadata-Based Approach
By Siddharth Reddy Bakkireddy, Rakesh Reddy Bakkireddy
This team tackled the challenge of detecting deception in closed-source, black-box models like GPT-3.5-turbo. They investigated whether LLM API response metadata such as token count, response time, and tokens per second could be used to detect intentional deceptive behavior.
The team analyzed 300 prompts and generated 1,200 responses from GPT-3.5-turbo, comparing the metadata of baseline and deceptive outputs. Their results revealed that deceptive outputs tend to have increased response times and altered token usage. This approach demonstrates that deception detection is possible without accessing a model's internal representation, opening up new avenues for monitoring and safeguarding AI systems, even when their inner workings are not accessible.
Read the full project here.
Modelling the Oversight of Automated Interpretability Against Deceptive Agents on Sp...
2447 episodes
Fetch error
Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on September 26, 2024 16:04 ()
What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.
Manage episode 435312648 series 2997284
This June, Apart Research and Apollo Research joined forces to host the Deception Detection Hackathon. Bringing together students, researchers, and engineers from around the world to tackle a pressing challenge in AI safety; preventing AI from deceiving humans and overseers.
The hackathon took place both online and in multiple physical locations simultaneously. Marius Hobbhahn, the CEO of Apollo Research, kicked off the hackathon with a keynote talk about evaluating deception in AI with white-box and black-box methods. You can watch his talk
here. We also had talks by Jacob Haimes, an Apart fellow, and Mikita Balesni, a research scientist at Apollo Research.
This post details the top 8 projects, multiple of which are currently being developed further in Apart Lab. In total, we had 189 participants and 21 final entries.
Sandbagging Detection through Model Degradation
By Cam Tice, Philipp Alexander Kreer, Fedor Ryzhenkov, Nathan Helm-Burger, Prithviraj Singh Shahani
The team introduced a new approach to detect AI sandbagging, a form of deception where an AI model strategically underperforms during evaluation to hide its true capabilities. The assumption behind their project is that sandbagging is a more complex task than showing the true capabilities.
In the graph above, you can see how they gradually add noise to the model's parameters and evaluate the models during this process. Sandbagging models consistently improve in performance right before the noise level causes a normal model to lose the capability.
It is a straightforward, inexpensive technique that doesn't require prior assumptions about how sandbagging is represented within the model. They successfully detected sandbagging behavior in two open-source LLMs: An 8B Llama 3 Instruct model and Phi 3 small instruct model. This approach offers a practical and accessible method for identifying potential deception in AI systems.
Read the full project here.
Detecting and Controlling Deceptive Representation in LLMs with Representational Engineering
By Avyay M Casheekar, Kaushik Sanjay Prabhakar, Kanishk Rath, Sienka Dounia
The team focused on detecting and mitigating sandbagging in AI models using recent methods for understanding activations. They fine-tuned a Llama 3 8B model on a custom dataset of deceptive and honest scenarios, then used Linear Artificial Tomography (LAT) scans to detect deceptive behaviors in the internal representations of the LLM.
The team's technique not only identified deceptive behaviors, but also showed promise in mitigating them. Importantly, their approach demonstrated good generalization to out-of-distribution scenarios, suggesting its potential robustness in real-world applications.
Read the full project here.
Detecting Deception in GPT-3.5-turbo: A Metadata-Based Approach
By Siddharth Reddy Bakkireddy, Rakesh Reddy Bakkireddy
This team tackled the challenge of detecting deception in closed-source, black-box models like GPT-3.5-turbo. They investigated whether LLM API response metadata such as token count, response time, and tokens per second could be used to detect intentional deceptive behavior.
The team analyzed 300 prompts and generated 1,200 responses from GPT-3.5-turbo, comparing the metadata of baseline and deceptive outputs. Their results revealed that deceptive outputs tend to have increased response times and altered token usage. This approach demonstrates that deception detection is possible without accessing a model's internal representation, opening up new avenues for monitoring and safeguarding AI systems, even when their inner workings are not accessible.
Read the full project here.
Modelling the Oversight of Automated Interpretability Against Deceptive Agents on Sp...
2447 episodes
All episodes
×Welcome to Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.