Artwork

Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

448: Myxomycete Makes Mycelial Memories

6:40
 
Share
 

Manage episode 287980822 series 1567470
Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Finally found some good stories, so we're back! This episode: How slime molds encode and use memories built into their own bodies!

Download Episode (4.6 MB, 6.7 minutes) Show notes: Microbe of the episode: Aeromonas salmoncida

News item Takeaways Despite being single-celled organisms, slime molds have fairly complex behavior, including a basic form of memory. They often grow as a network of tubes of cytoplasm branching out from one place to find and exploit new sources of food in their environment. When these tubes connect to new food, other less productive branches of its body shrink away. As it turns out, this body form serves a role in memory also. This study determined that the slime mold's tubes undergo constant squeezing, which moves cell contents around and also shrinks them. When tubes are connecting to a food source though, they secrete a softening agent that allows the pressure to expand the tubes instead of shrinking them. These larger tubes consequently are capable of transporting more softening agent farther away to newer food sources, so the history of food discoveries is recorded in the slime mold's own body, which also influences its responses to new discoveries. Journal Paper: Kramar M, Alim K. 2021. Encoding memory in tube diameter hierarchy of living flow network. Proc Natl Acad Sci 118.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episodes

Artwork

448: Myxomycete Makes Mycelial Memories

BacterioFiles

172 subscribers

published

iconShare
 
Manage episode 287980822 series 1567470
Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Finally found some good stories, so we're back! This episode: How slime molds encode and use memories built into their own bodies!

Download Episode (4.6 MB, 6.7 minutes) Show notes: Microbe of the episode: Aeromonas salmoncida

News item Takeaways Despite being single-celled organisms, slime molds have fairly complex behavior, including a basic form of memory. They often grow as a network of tubes of cytoplasm branching out from one place to find and exploit new sources of food in their environment. When these tubes connect to new food, other less productive branches of its body shrink away. As it turns out, this body form serves a role in memory also. This study determined that the slime mold's tubes undergo constant squeezing, which moves cell contents around and also shrinks them. When tubes are connecting to a food source though, they secrete a softening agent that allows the pressure to expand the tubes instead of shrinking them. These larger tubes consequently are capable of transporting more softening agent farther away to newer food sources, so the history of food discoveries is recorded in the slime mold's own body, which also influences its responses to new discoveries. Journal Paper: Kramar M, Alim K. 2021. Encoding memory in tube diameter hierarchy of living flow network. Proc Natl Acad Sci 118.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide