Artwork

Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

466: Microbes Mining Mars Minerals

9:01
 
Share
 

Manage episode 311058735 series 1567470
Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

This episode: Bacteria are able to extract metals from rocks for industrial use, even in microgravity!

Download Episode (6.2 MB, 9.0 minutes) Show notes: Microbe of the episode: Decapod ambidensovirus 1

News item Takeaways As humanity makes progress toward becoming an interplanetary species, consideration is needed on how travelers can survive and thrive in distant places. These methods may look very different from what works well on Earth, with differences in gravity, atmosphere, and access to resources. For example, mining for materials for construction may not be feasible using methods common on Earth. An alternative may be biomining, using microbes that can selectively extract and purify specific metals from minerals. In this study, the European Space Agency tested the ability of several microbes to extract vanadium from rocks in different gravity conditions, on the International Space Station. Two out of three microbes were able to extract twice as much vanadium as was extracted in the absence of microbes, both on a planet and up in space. Journal Paper: Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon C-M, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. 2021. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 12:663.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episodes

Artwork

466: Microbes Mining Mars Minerals

BacterioFiles

172 subscribers

published

iconShare
 
Manage episode 311058735 series 1567470
Content provided by Jesse Noar. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Jesse Noar or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

This episode: Bacteria are able to extract metals from rocks for industrial use, even in microgravity!

Download Episode (6.2 MB, 9.0 minutes) Show notes: Microbe of the episode: Decapod ambidensovirus 1

News item Takeaways As humanity makes progress toward becoming an interplanetary species, consideration is needed on how travelers can survive and thrive in distant places. These methods may look very different from what works well on Earth, with differences in gravity, atmosphere, and access to resources. For example, mining for materials for construction may not be feasible using methods common on Earth. An alternative may be biomining, using microbes that can selectively extract and purify specific metals from minerals. In this study, the European Space Agency tested the ability of several microbes to extract vanadium from rocks in different gravity conditions, on the International Space Station. Two out of three microbes were able to extract twice as much vanadium as was extracted in the absence of microbes, both on a planet and up in space. Journal Paper: Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon C-M, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. 2021. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 12:663.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide