Artwork

Content provided by NLP Highlights and Allen Institute for Artificial Intelligence. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NLP Highlights and Allen Institute for Artificial Intelligence or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

97 - Automated Analysis Of Historical Printed Documents, With Taylor Berg-Kirkpatrick

44:11
 
Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:30 (24d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 247106961 series 1452120
Content provided by NLP Highlights and Allen Institute for Artificial Intelligence. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NLP Highlights and Allen Institute for Artificial Intelligence or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
In this episode, we talk to Taylor Berg-Kirkpatrick about optical character recognition (OCR) on historical documents. Taylor starts off by describing some practical issues related to old scanning processes of documents that make performing OCR on them a difficult problem. Then he explains how one can build latent variable models for this data using unsupervised methods, the relative importance of various modeling choices, and summarizes how well the models do. We then take a higher level view of historical OCR as a Machine Learning problem, and discuss how it is different from other ML problems in terms of the tradeoff between learning from data and imposing constraints based on prior knowledge of the underlying process. Finally, Taylor talks about the applications of this research, and how these predictions can be of interest to historians studying the original texts.
  continue reading

145 episodes

Artwork
iconShare
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:30 (24d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 247106961 series 1452120
Content provided by NLP Highlights and Allen Institute for Artificial Intelligence. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NLP Highlights and Allen Institute for Artificial Intelligence or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
In this episode, we talk to Taylor Berg-Kirkpatrick about optical character recognition (OCR) on historical documents. Taylor starts off by describing some practical issues related to old scanning processes of documents that make performing OCR on them a difficult problem. Then he explains how one can build latent variable models for this data using unsupervised methods, the relative importance of various modeling choices, and summarizes how well the models do. We then take a higher level view of historical OCR as a Machine Learning problem, and discuss how it is different from other ML problems in terms of the tradeoff between learning from data and imposing constraints based on prior knowledge of the underlying process. Finally, Taylor talks about the applications of this research, and how these predictions can be of interest to historians studying the original texts.
  continue reading

145 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide