Artwork

Content provided by USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Variable short-term slip rate on the Imperial fault modulated by filling of the Salton Trough by Lake Cahuilla

1:00:00
 
Share
 

Manage episode 410701420 series 1399341
Content provided by USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Thomas Rockwell, San Diego State University

The Salton Basin was free of significant water between about 100 BCE and 950 CE but has filled to the sill elevation of +13 m six times between ca 950 and 1730 CE. Based on a dense array of cone penetrometer (CPT) soundings across a small sag pond, the Imperial fault is interpreted to have experienced an increase in earthquake rate and accelerated slip in the few hundred years after re-inundation, an observation that is also seen on the southern San Andreas and San Jacinto faults. This regional basin-wide signal of transient accelerated slip in interpreted to result from the effects of increased pore pressure on fault strength resulting from the ~100 m of water load during full lake inundations. If the relationship between co-seismic subsidence in the sag depression and horizontal slip through the sag is even close to constant, the slip rate on the Imperial fault may have exceeded the plate rate for a few hundred years due to excess stored elastic strain that accumulated during the extended dry period prior to ca 950 CE.

  continue reading

20 episodes

Artwork
iconShare
 
Manage episode 410701420 series 1399341
Content provided by USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Thomas Rockwell, San Diego State University

The Salton Basin was free of significant water between about 100 BCE and 950 CE but has filled to the sill elevation of +13 m six times between ca 950 and 1730 CE. Based on a dense array of cone penetrometer (CPT) soundings across a small sag pond, the Imperial fault is interpreted to have experienced an increase in earthquake rate and accelerated slip in the few hundred years after re-inundation, an observation that is also seen on the southern San Andreas and San Jacinto faults. This regional basin-wide signal of transient accelerated slip in interpreted to result from the effects of increased pore pressure on fault strength resulting from the ~100 m of water load during full lake inundations. If the relationship between co-seismic subsidence in the sag depression and horizontal slip through the sag is even close to constant, the slip rate on the Imperial fault may have exceeded the plate rate for a few hundred years due to excess stored elastic strain that accumulated during the extended dry period prior to ca 950 CE.

  continue reading

20 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide