Artwork

Content provided by American Society for Microbiology, Ashley Hagen, and M.S.. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by American Society for Microbiology, Ashley Hagen, and M.S. or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Trillion Dollar Microbes Make the Bioeconomy Go Round With Tim Donohue

49:03
 
Share
 

Manage episode 420836689 series 1537292
Content provided by American Society for Microbiology, Ashley Hagen, and M.S.. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by American Society for Microbiology, Ashley Hagen, and M.S. or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Episode Summary Timothy Donohue, Ph.D.—ASM Past President, University of Wisconsin Foundation Fetzer Professor of Bacteriologyand Director of the Great Lakes Bioenergy Research Center (GLBRC) calls genomics a game-changer when it comes the potential of microbes to create renewable resources and products that can sustain the environment, economy and supply chain around the world. He also shares some exciting new advances in the field and discusses ways his research team is using microorganisms as nanofactories to degrade lignocellulose and make a smorgasbord of products with high economic value. Take the MTM listener survey! Ashley's Biggest Takeaways:
  • The bioeconomy can be broadly defined as the use of renewable resources, including microorganisms, to produce valuable goods, products and services.
  • Microbes have the potential to create products that cannot be made by existing synthetic chemistry routes.
  • Using raw, renewable resources to create a circular bioeconomy is beneficial to the environmental footprint, economic footprint and supply chain security around the globe.
Links for This Episode:
  continue reading

161 episodes

Artwork
iconShare
 
Manage episode 420836689 series 1537292
Content provided by American Society for Microbiology, Ashley Hagen, and M.S.. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by American Society for Microbiology, Ashley Hagen, and M.S. or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Episode Summary Timothy Donohue, Ph.D.—ASM Past President, University of Wisconsin Foundation Fetzer Professor of Bacteriologyand Director of the Great Lakes Bioenergy Research Center (GLBRC) calls genomics a game-changer when it comes the potential of microbes to create renewable resources and products that can sustain the environment, economy and supply chain around the world. He also shares some exciting new advances in the field and discusses ways his research team is using microorganisms as nanofactories to degrade lignocellulose and make a smorgasbord of products with high economic value. Take the MTM listener survey! Ashley's Biggest Takeaways:
  • The bioeconomy can be broadly defined as the use of renewable resources, including microorganisms, to produce valuable goods, products and services.
  • Microbes have the potential to create products that cannot be made by existing synthetic chemistry routes.
  • Using raw, renewable resources to create a circular bioeconomy is beneficial to the environmental footprint, economic footprint and supply chain security around the globe.
Links for This Episode:
  continue reading

161 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide