Artwork

Content provided by NLP Highlights and Allen Institute for Artificial Intelligence. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NLP Highlights and Allen Institute for Artificial Intelligence or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

112 - Alignment of Multilingual Contextual Representations, with Steven Cao

33:15
 
Share
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:30 (24d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 261766284 series 1452120
Content provided by NLP Highlights and Allen Institute for Artificial Intelligence. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NLP Highlights and Allen Institute for Artificial Intelligence or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
We invited Steven Cao to talk about his paper on multilingual alignment of contextual word embeddings. We started by discussing how multilingual transformers work in general, and then focus on Steven’s work on aligning word representations. The core idea is to start from a list of words automatically aligned from parallel corpora and to ensure the representations of the aligned words are similar to each other while not moving too far away from their original representations. We discussed the experiments on the XNLI dataset in the paper, analysis, and the decision to do the alignment at word level and compare it to other possibilities such as aligning word pieces or higher level encoded representations in transformers. Paper: https://openreview.net/forum?id=r1xCMyBtPS Steven Cao’s webpage: https://stevenxcao.github.io/
  continue reading

145 episodes

Artwork
iconShare
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:30 (24d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 261766284 series 1452120
Content provided by NLP Highlights and Allen Institute for Artificial Intelligence. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by NLP Highlights and Allen Institute for Artificial Intelligence or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
We invited Steven Cao to talk about his paper on multilingual alignment of contextual word embeddings. We started by discussing how multilingual transformers work in general, and then focus on Steven’s work on aligning word representations. The core idea is to start from a list of words automatically aligned from parallel corpora and to ensure the representations of the aligned words are similar to each other while not moving too far away from their original representations. We discussed the experiments on the XNLI dataset in the paper, analysis, and the decision to do the alignment at word level and compare it to other possibilities such as aligning word pieces or higher level encoded representations in transformers. Paper: https://openreview.net/forum?id=r1xCMyBtPS Steven Cao’s webpage: https://stevenxcao.github.io/
  continue reading

145 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide