Artwork

Content provided by Dr. Pradip Kamat, Dr. Rahul Damania, Dr. Pradip Kamat, and Dr. Rahul Damania. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Dr. Pradip Kamat, Dr. Rahul Damania, Dr. Pradip Kamat, and Dr. Rahul Damania or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Physiology of High-Flow Nasal Cannula (HFNC)

19:08
 
Share
 

Manage episode 383453043 series 3453614
Content provided by Dr. Pradip Kamat, Dr. Rahul Damania, Dr. Pradip Kamat, and Dr. Rahul Damania. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Dr. Pradip Kamat, Dr. Rahul Damania, Dr. Pradip Kamat, and Dr. Rahul Damania or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Today’s case presentation involves a 2-year-old girl who was previously healthy and was admitted to the Pediatric Intensive Care Unit (PICU) for acute respiratory distress characterized by increased work of breathing and wheezing.

Case Presentation

A 2-year-old girl with acute respiratory distress due to RSV infection

  • Presented with increased work of breathing, wheezing, and no fever
  • Started on High Flow Nasal Cannula (HFNC) therapy in the PICU

Key Elements:

  • Prodrome of URI symptoms
  • Increased respiratory effort (nasal flaring, intercostal retractions, decreased lung base air entry)
  • HFNC improved the work of breathing and oxygen saturation

Physiology of HFNC

Mechanisms of Action

Washout of Nasopharyngeal Dead Space:

  • HFNC clears nasopharyngeal dead space, improving oxygen efficiency.
  • Reduces re-breathing of CO2 from the anatomical dead space.
  • Enhances ventilation efficiency and oxygenation.

Reduction in Upper Airway Resistance:

  • HFNC reduces resistance in the upper airway.
  • Delivers rapid gas flow matching or exceeding natural inhalation rate.
  • Eases breathing, especially in neonates and infants with narrow airways.

Optimal Conditioning of Gas:

  • HFNC delivers heated and humidified oxygen, matching the body's conditions.
  • Reduces energy expenditure and risk of airway irritation
  • More comfortable and effective compared to cold, dry air delivery

Debunking the PEEP Theory (Positive End-Expiratory Pressure)

  • HFNC generates minimal and variable PEEP.
  • Amount of PEEP depends on factors like flow rate and cannula size
  • Not as high or consistent as other respiratory support devices

Research Findings

  • A 2022 CHEST study by Khemani et al. on children with bronchiolitis challenged the conventional understanding of HFNC's mechanisms.
  • HFNC primarily reduces breathing effort but does not consistently increase lung volume (EELV) or tidal volume (VT).
  • Reduction in the pressure rate product (PRP) indicates decreased breathing effort, but not significant alterations in EELV or VT.

Physiological Effects

  • HR, RR, and SpO2 are key indicators of HFNC efficacy.
  • HR and RR should approach normal ranges for the child's age.
  • Improvement in SpO2 levels while maintaining or reducing FiO2 indicates a positive response.

Conclusion

  • HFNC is a valuable tool in pediatric care for alleviating respiratory distress.
  • Not a one-size-fits-all solution; vigilant monitoring and reassessment are crucial
  • Recognizing HFNC's mechanisms allows for optimized bedside application.

Closing Remarks:

  • Subscribe, share feedback, and leave a review on the podcast.
  • Visit picudoconcall.org for more episodes and management cards.
  • Hosted by Dr. Pradip Kamat and Dr. Rahul Damania

References

Miller AG, Gentle MA, Tyler LM, Napolitano N. High-Flow Nasal Cannula in Pediatric Patients: A Survey of Clinical Practice. Respir Care 2018; 63:894.

Wraight TI, Ganu SS. High-flow nasal cannula use in a pediatric intensive care unit over 3 years. Crit Care Resusc 2015; 17:197.

Hutchings FA, Hilliard TN, Davis PJ. Heated humidified high-flow nasal cannula therapy in children. Arch Dis Child 2015; 100:571.

Lee JH, Rehder KJ, Williford L, et al. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med 2013; 39:247.

Wing R, James C, Maranda LS, Armsby CC. Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care 2012; 28:1117.

Bressan S, Balzani M, Krauss B, et al. High-flow nasal cannula oxygen for bronchiolitis in a pediatric ward: a pilot study. Eur J Pediatr 2013; 172:1649.

Mayfield S, Bogossian F, O'Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health 2014; 50:373.

Kelly GS, Simon HK, Sturm JJ. High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care 2013; 29:888.

  continue reading

89 episodes

Artwork
iconShare
 
Manage episode 383453043 series 3453614
Content provided by Dr. Pradip Kamat, Dr. Rahul Damania, Dr. Pradip Kamat, and Dr. Rahul Damania. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Dr. Pradip Kamat, Dr. Rahul Damania, Dr. Pradip Kamat, and Dr. Rahul Damania or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

Today’s case presentation involves a 2-year-old girl who was previously healthy and was admitted to the Pediatric Intensive Care Unit (PICU) for acute respiratory distress characterized by increased work of breathing and wheezing.

Case Presentation

A 2-year-old girl with acute respiratory distress due to RSV infection

  • Presented with increased work of breathing, wheezing, and no fever
  • Started on High Flow Nasal Cannula (HFNC) therapy in the PICU

Key Elements:

  • Prodrome of URI symptoms
  • Increased respiratory effort (nasal flaring, intercostal retractions, decreased lung base air entry)
  • HFNC improved the work of breathing and oxygen saturation

Physiology of HFNC

Mechanisms of Action

Washout of Nasopharyngeal Dead Space:

  • HFNC clears nasopharyngeal dead space, improving oxygen efficiency.
  • Reduces re-breathing of CO2 from the anatomical dead space.
  • Enhances ventilation efficiency and oxygenation.

Reduction in Upper Airway Resistance:

  • HFNC reduces resistance in the upper airway.
  • Delivers rapid gas flow matching or exceeding natural inhalation rate.
  • Eases breathing, especially in neonates and infants with narrow airways.

Optimal Conditioning of Gas:

  • HFNC delivers heated and humidified oxygen, matching the body's conditions.
  • Reduces energy expenditure and risk of airway irritation
  • More comfortable and effective compared to cold, dry air delivery

Debunking the PEEP Theory (Positive End-Expiratory Pressure)

  • HFNC generates minimal and variable PEEP.
  • Amount of PEEP depends on factors like flow rate and cannula size
  • Not as high or consistent as other respiratory support devices

Research Findings

  • A 2022 CHEST study by Khemani et al. on children with bronchiolitis challenged the conventional understanding of HFNC's mechanisms.
  • HFNC primarily reduces breathing effort but does not consistently increase lung volume (EELV) or tidal volume (VT).
  • Reduction in the pressure rate product (PRP) indicates decreased breathing effort, but not significant alterations in EELV or VT.

Physiological Effects

  • HR, RR, and SpO2 are key indicators of HFNC efficacy.
  • HR and RR should approach normal ranges for the child's age.
  • Improvement in SpO2 levels while maintaining or reducing FiO2 indicates a positive response.

Conclusion

  • HFNC is a valuable tool in pediatric care for alleviating respiratory distress.
  • Not a one-size-fits-all solution; vigilant monitoring and reassessment are crucial
  • Recognizing HFNC's mechanisms allows for optimized bedside application.

Closing Remarks:

  • Subscribe, share feedback, and leave a review on the podcast.
  • Visit picudoconcall.org for more episodes and management cards.
  • Hosted by Dr. Pradip Kamat and Dr. Rahul Damania

References

Miller AG, Gentle MA, Tyler LM, Napolitano N. High-Flow Nasal Cannula in Pediatric Patients: A Survey of Clinical Practice. Respir Care 2018; 63:894.

Wraight TI, Ganu SS. High-flow nasal cannula use in a pediatric intensive care unit over 3 years. Crit Care Resusc 2015; 17:197.

Hutchings FA, Hilliard TN, Davis PJ. Heated humidified high-flow nasal cannula therapy in children. Arch Dis Child 2015; 100:571.

Lee JH, Rehder KJ, Williford L, et al. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med 2013; 39:247.

Wing R, James C, Maranda LS, Armsby CC. Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care 2012; 28:1117.

Bressan S, Balzani M, Krauss B, et al. High-flow nasal cannula oxygen for bronchiolitis in a pediatric ward: a pilot study. Eur J Pediatr 2013; 172:1649.

Mayfield S, Bogossian F, O'Malley L, Schibler A. High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health 2014; 50:373.

Kelly GS, Simon HK, Sturm JJ. High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care 2013; 29:888.

  continue reading

89 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide