The Dr. Data Show with Eric Siegel


Archived series ("Inactive feed" status)

When? This feed was archived on March 03, 2022 02:29 (1y ago). Last successful fetch was on January 28, 2022 02:20 (1y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage series 3304462
By Eric Siegel. Discovered by Player FM and our community — copyright is owned by the publisher, not Player FM, and audio is streamed directly from their servers. Hit the Subscribe button to track updates in Player FM, or paste the feed URL into other podcast apps.
Eric Siegel covers why machine learning is the most important, most potent, most screwed up, most misunderstood, and most dangerous technology. And did I mention most important? Yup, it’s the most important – but most projects fail to deliver value. This podcast will help you: - Make machine learning effective and valuable - Catch common machine learning oversights - Understand ethical pitfalls – concretely - Sniff out all the ”artificial intelligence” malarky This podcast is for both data scientists and business leaders of all kinds – such as executives, directors, line of business managers, and consultants – who are involved in or affected by the deployment of machine learning. To get machine learning to work, both the tech and business sides must make an effort to reach across wide chasm. About the host: Eric Siegel, Ph.D., is a leading consultant and former Columbia University professor who bridges the business and tech sides of machine learning. He is the founder of the Predictive Analytics World and Deep Learning World conference series, which have served more than 17,000 attendees since 2009. As the instructor of the acclaimed online course “Machine Learning Leadership and Practice – End-to-End Mastery”, a winner of teaching awards as a professor, and a popular speaker, Eric has given more than 110 keynote addresses. The executive editor of The Machine Learning Times, he wrote the bestselling Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die, which has been adopted for courses at hundreds of universities. Eric has appeared on numerous media channels, including Bloomberg, National Geographic, and NPR, and has published in Newsweek, HBR, SciAm blog, WaPo, WSJ, and more – including op-eds on analytics and social justice. Follow him @predictanalytic.

3 episodes