Artwork

Content provided by The New Stack Podcast and The New Stack. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The New Stack Podcast and The New Stack or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

How etcd Solved Its Knowledge Drain with Deterministic Testing

21:18
 
Share
 

Manage episode 522841623 series 75006
Content provided by The New Stack Podcast and The New Stack. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The New Stack Podcast and The New Stack or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

The etcd project — a distributed key-value store older than Kubernetes — recently faced significant challenges due to maintainer turnover and the resulting loss of unwritten institutional knowledge. Lead maintainer Marek Siarkowicz explained that as longtime contributors left, crucial expertise about testing procedures and correctness guarantees disappeared. This gap led to a problematic release that introduced critical reliability issues, including potential data inconsistencies after crashes.

To rebuild confidence in etcd’s correctness, the new maintainer team introduced “robustness testing,” creating a framework inspired by Jepsen to validate both basic and distributed-system behavior. Their goal was to ensure linearizability, the “Holy Grail” of distributed systems, which required developing custom failure-injection tools and teaching the community how to debug complex scenarios.

The team later partnered with Antithesis to apply deterministic simulation testing, enabling fully reproducible execution paths and easier detection of subtle race conditions. This approach helped codify implicit knowledge into explicit properties and assertions. Siarkowicz emphasized that such rigorous testing is essential for safeguarding the sensitive “core” of large open source projects, ensuring correctness even as maintainers change.

Learn more from The New Stack about the etcd project

Tutorial: Install a Highly Available K3s Cluster at the Edge

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

917 episodes

Artwork
iconShare
 
Manage episode 522841623 series 75006
Content provided by The New Stack Podcast and The New Stack. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by The New Stack Podcast and The New Stack or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.

The etcd project — a distributed key-value store older than Kubernetes — recently faced significant challenges due to maintainer turnover and the resulting loss of unwritten institutional knowledge. Lead maintainer Marek Siarkowicz explained that as longtime contributors left, crucial expertise about testing procedures and correctness guarantees disappeared. This gap led to a problematic release that introduced critical reliability issues, including potential data inconsistencies after crashes.

To rebuild confidence in etcd’s correctness, the new maintainer team introduced “robustness testing,” creating a framework inspired by Jepsen to validate both basic and distributed-system behavior. Their goal was to ensure linearizability, the “Holy Grail” of distributed systems, which required developing custom failure-injection tools and teaching the community how to debug complex scenarios.

The team later partnered with Antithesis to apply deterministic simulation testing, enabling fully reproducible execution paths and easier detection of subtle race conditions. This approach helped codify implicit knowledge into explicit properties and assertions. Siarkowicz emphasized that such rigorous testing is essential for safeguarding the sensitive “core” of large open source projects, ensuring correctness even as maintainers change.

Learn more from The New Stack about the etcd project

Tutorial: Install a Highly Available K3s Cluster at the Edge

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.

Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

917 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide

Copyright 2025 | Privacy Policy | Terms of Service | | Copyright
Listen to this show while you explore
Play