Artwork

Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Player FM - Podcast App
Go offline with the Player FM app!

Magnets, superfluids and superconductors

47:07
 
Share
 

Archived series ("Inactive feed" status)

When? This feed was archived on September 18, 2020 01:08 (3+ y ago). Last successful fetch was on March 23, 2020 01:55 (4y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 168742582 series 1329674
Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Second lecture "More is different" - how states of matter emerge from quantum theory Saturday morning of Theoretical Physics. With Professor Fabian Essler, introduction by Professor John Wheeler. Fabian Essler will discuss the hugely successful framework for classifying possible states of quantum matter, pioneered by the great Russian Nobel Laureate, Lev Landau. This framework is conceptually remarkably simple, but is broad enough to describe physics ranging from magnets to superconductors to fundamental physics in the guise of relativistic quantum field theory and the Higgs phenomenon. More on this mini-series; The properties of all forms of matter, from the most mundane to the most exotic kinds produced in advanced laboratories, are consequences of the laws of quantum mechanics. Understanding how macroscopic behaviour emerges from microscopic laws in a system of many particles is one of the intellectually most demanding, yet most important, challenges of physics, and is the subject of this series of lectures.
  continue reading

81 episodes

Artwork
iconShare
 

Archived series ("Inactive feed" status)

When? This feed was archived on September 18, 2020 01:08 (3+ y ago). Last successful fetch was on March 23, 2020 01:55 (4y ago)

Why? Inactive feed status. Our servers were unable to retrieve a valid podcast feed for a sustained period.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 168742582 series 1329674
Content provided by Oxford University. All podcast content including episodes, graphics, and podcast descriptions are uploaded and provided directly by Oxford University or their podcast platform partner. If you believe someone is using your copyrighted work without your permission, you can follow the process outlined here https://player.fm/legal.
Second lecture "More is different" - how states of matter emerge from quantum theory Saturday morning of Theoretical Physics. With Professor Fabian Essler, introduction by Professor John Wheeler. Fabian Essler will discuss the hugely successful framework for classifying possible states of quantum matter, pioneered by the great Russian Nobel Laureate, Lev Landau. This framework is conceptually remarkably simple, but is broad enough to describe physics ranging from magnets to superconductors to fundamental physics in the guise of relativistic quantum field theory and the Higgs phenomenon. More on this mini-series; The properties of all forms of matter, from the most mundane to the most exotic kinds produced in advanced laboratories, are consequences of the laws of quantum mechanics. Understanding how macroscopic behaviour emerges from microscopic laws in a system of many particles is one of the intellectually most demanding, yet most important, challenges of physics, and is the subject of this series of lectures.
  continue reading

81 episodes

All episodes

×
 
Loading …

Welcome to Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Quick Reference Guide